Узлы фундамента с полом по грунту

Полы по грунту

Наиболее простым и эффективным решением устройства полов первого этажа в частном домостроении является использование «плавающих» полов по грунту. Ниже рассмотрим особенности этой конструкции.

Чаще всего полы по грунту используются в сочетании с МЗЛФ. В этом случае внутри рамки ленточного фундамента снимается весь почвенно-растительный слой и выполняется засыпка пазух и внутреннего объёма ленты песком, на который затем укладываются гидроизоляция, утеплитель и заливается стяжка пола:

Рис. 1. Сочетание МЗЛФ с плавающими полами по грунту.

Развязывание узла «фундамент/пол по грунту» делается для того, чтобы не возникало защемление плиты пола в рамке ленты. Т.е. пол внутри рамки МЗЛФ пол должен относительно свободно перемещаться, иначе теряется весь смысл плавающей стяжки.

Для развязки используется демпфер (см. рис.1). Часто встречаются рекомендации использовать для демпфера вспененный полиэтилен или изолон толщиной 8-10 мм, но согласно СП 29.13330.2011, зазоры рекомендуется делать 25-30 мм, поэтому лучше использовать тонкие плиты ПСБ или ЭППС соответствующей толщины.

Согласно того же СП 29.13330.2011, стяжка пола должна выполняться из бетона маркой не ниже В15 и армироваться сетками с шагом стержней от 100 до 200 мм. Традиционно стяжка пола армируется сетками из проволоки Вр 4-5 мм, т.к. все остальные виды арматуры имеют больший диаметр и существенно сокращают рабочее сечение пола.

    • Если возникнет осадка дома, то стяжка пола по грунту «сыграет» независимо от фундамента, в конструкции не появятся деформации и трещины.
    • В таком полу можно установить обогревающие трубки «теплого пола», решив одновременно и вопрос отопления. Кроме комфортного варианта отопления такое решение представляет собой вариант теплового аккумулятора, что немаловажно в случаях возможных аварий котельного оборудования.
Читайте также:  Реконструкция фундаментов вдавливаемыми сваями

Минусы:

    • Пол «живёт своей жизнью», отдельной от всех остальных несущих конструкций.
    • Высокая зависимость решения от качества подготовки основания.
    • Возможность образования трещин и перепадов в местах соединения полов по грунту со стеной/фундаментом.

Кроме этого, есть ещё мнения, что на такую конструкцию полов нельзя ставить тяжёлые кирпичные перегородки.

Рассмотрим, как можно избежать проблем с плавающими полами и нивелировать их минусы.

Разность в осадке фундамента и полов по грунту

Смещение полов по грунту относительно фундамента и стен может быть связано со следующими основными факторами:

  1. Фундамент несёт на себе значительно большую нагрузку, чем полы по грунту. Поэтому обычно со временем он даёт осадку и смещается вниз относительно пола.
  2. Осадка полов относительно фундамента может быть связана только с осадкой подушки, засыпаемой вовнутрь МЗЛФ. Обычно это вызвано плохим её уплотнением.

Для того, чтобы избежать указанных проблем, можно порекомендовать выполнять засыпку подушки полов сразу после устройства фундамента, а заливку стяжки делать уже после окончания возведения всей коробки. В этом случае к моменту заливки стяжки пола фундамент получает полную нагрузку и как правило «выбирает» основную осадку, а подушка под пол за время строительства успевает самоуплотниться так, чтобы исключить осадку полов из-за некачественного уплотнения (нормативный период самоуплотнения песка до коэф. 0,95 составляет 6 месяцев).

Разумеется, что при этом должны быть выполнены мероприятия по защите фундамента от действия сил морозного пучения, т.к. в случае их отсутствия возможно возникновение ещё одного фактора — сезонное смещение фундамента относительно стяжки пола из-за действия сил морозного пучения.

Монтаж кирпичных перегородок на полы по грунту

Наиболее тяжёлым вариантом перегородок, которые могут монтироваться на полы по грунту, являются кирпичные.

Таб. 1. Сравнение перегородок из газобетона и кирпича для высоты этажа в 2,7 метра.

Мате­риал пере­городки Тол­щина пере­городки Отдел­ка Плот­ность кладки Общая погон­ная на­грузка
Газо­бетон D500 200 мм Гип­совые смеси 2х5мм 500 кг/м3 275 кг/м.п.
Кир­пич сили­катный полно­телый 120 мм Штука­турка 2х20мм 1800 кг/м3 775 кг/м.п.

Из таблицы 1 видно, что погонная нагрузка от перегородки из силикатного кирпича почти в 3 раза превышает нагрузку от газобетона.

Проведём расчёт деформации, изгибающего момента, потребности в армировании и усилий на продавливание, возникающих в полах по грунту для кирпичной перегородки из таб.1.

Расчёт проведём в Autodesk Robot Structural Analysis Professional 2014 на основе следующей модели:

Рис. 2. Расчётная модель.

В модели взята плита размером 5х5 метров, бетон В15 толщиной 100 мм, армирование сеткой из Вр 5 мм в нижней части плиты, защитный слой снизу 20 мм. Нагрузки заданы от собственного веса плита и кирпичной перегородки по таб.1, а также эксплуатационные нагрузки по всей плоскости плиты в 150 кг/м2.

Коэффициент постели упругого основания плиты определён по встроенному в программу калькулятору:

Рис. 3. Коэффициент постели.

Получены следующие результаты:

Рис. 4. Осадка плиты под нагрузкой.

Рис. 5. Реакция опоры.

Рис. 6. Изгибающий момент в плите.

Рис. 7. Площади сечения арматуры на м.п. плиты в направлении Х и У.

Рис. 8. Число стержней на 1 м.п. в сетке в направлении Х и У. Соответствует ячейке 150х150 мм.

Малая величина осадки и возникающего изгибающего момента связана с жесткостью основания. Несмотря на то, что ПСБ обладает очень малым модулем упругости, относительно небольшая его толщина приводит к тому, что общая жесткость основания понижается несильно. Увеличение толщины утеплителя до 200 мм соответственно даёт увеличение осадки:

Рис. 9. Осадка при увеличении толщины утеплителя.

Интересный результат даёт изменение структуры основания полов по грунту вот таким образом:

Рис. 10. Вариант конструкции полов по грунту увеличенной жесткости.

В этом случае коэффициент постели увеличивается почти в 1,5 раза:

Рис. 11. Изменение коэффициента постели при изменении структуры «пирога» полов по грунту.

При этом калькулятор коэффициента постели из Autodesk Robot Structural Analysis Professional 2014 не учитывает трапеции распределения нагрузки в слое песчаной подушки, поэтому в реальности жесткость основания увеличивается больше, чем в 1,5 раза. Такую конструкцию можно использовать для высоко нагруженных полов.

Интересно, что разработчики УШП из Дороселл утверждают, что плитная часть УШП, которая по сути представляет собой пол по грунту, способна нести значительно большую нагрузку, чем кирпичная перегородка в полкирпича:

Рис. 12. Нагрузки в УШП от Дороселл.

Расчёт на продавливание выполнялся в программе BASE 7.6. В отличии от Autodesk Robot Structural Analysis Professional 2014 в ней нет расчёта коэффициента постели и сопротивления сложных структур основания, поэтому он был задан максимально низким:

Рис. 13. Условия расчёта на продавливание.

Рис. 14. Результаты расчёта на продавливание.

Приём для уменьшения деформаций в местах переходов

Основные риски излома покрытия полов возможны в местах перехода от полов по грунту к другим конструкциям, например, в проёмах капитальных стен:

Рис. 15. Пример проёма в капитальной стене.

Технически этот момент решается довольно просто:

Рис. 16. Узел прохождения полов по грунту в проёме капитальной стены.

Как видим, при устройстве полов по грунту на отметке, выше верхнего обреза фундамента (см. рис. 1), в районе проёмов пол по грунту через слой пенополистирола опирается не на подушку, а на сам фундамент. При этом, при каких-либо возможных подвижках фундамента вверх (что вообще крайне маловероятно), слой ПСБ работает как упругая вставка, «проглатывая» эти деформации. При осадке уже основного фундамента, пол по грунту «зависает» в проёме, работая как очень короткая плита перекрытия.

Источник

Узлы в Полах по грунту. Стяжка на фундамент. ГК и стяжка

Приветствую вас, мои Читатели и Зрители строительного Блога “Путь Домой”. Данная тема уже очень часто обсуждалась на моем Блоге, что мне уже немного неудобно к ней возвращаться. Казалось бы уже все объяснил, но все еще за все эти годы возникают вопросы на эту тему.

Ответ на первый вопрос достаточно простой — полы по грунту не являются несущей конструкцией. То есть это не фундамент, эти конструкции не предназначены держать большие нагрузки.

Далее я подробнее расскажу об этом. Покажу какие могут быть варианты опирания лестницы. Возможные решения узлов в «полах по грунту»,в случае когда чистовая стяжка заходит на фундамент. Также расскажу об особенностях установки гипсокартонных перегородок. Что делать с деформационным швом по периметру?

1:50 Опирание бетонной лестницы на пол по грунту
4:28 Какие могут быть варианты опирания лестницы?
5:57 Как решаются узлы в “полах на грунту”, когда чистовая стяжка заходит на фундамент?
13:08 Особенности установки гипсокартонных перегородок

Упоминалось в видео:

С Уважением, Александр Терехов

Опубликовано 7 комментариев

Добрый день, Александр!
Вопрос по теме видео:
Когда проседает грунт под полами на 1-2 см и проминается ЭППС что происходит с пароизоляцией под ним?

Здесь, Дмитрий, надо думать не о пароизоляции, а куда ноги уносить! Чтобы в лес не вывезли.
Грунт уплотняется. Поэтому не проседает.

Александр, доброго дня! У нас такой фундамент, как описано в Вашем видео. Только у Вас мы нашли, как сделать это грамотно, за что Вам огромное спасибо!! Хотим комфортный пол, и возник вопрос по верхним слоям, которые заходят на стену. У нас рубленый дом из бревна и стена начинается 10 см обвязочного бруса. Могут ли слои эппс и стяжки с трубами примыкать к брусу, если их разделить демпферной лентой и эппс 20, или нет?

На аналогичную тему есть видео.

Здравствуйте Александр. Хочу поблагодарить вас за вашу работу. Вы делаете большое дело. У меня есть вопрос. Делаю полы по грунту. Бетон залили не совсем ровно. Нужно ли его выравнивать перед укладкой пароизоляции и эппс и если нужно то чем- раствором или невилирами»? Уточнение: перепады не большие, но волнует то, что под эппс могут остаться свободные полости или он треснет рано или поздно.

Здравствуйте. Сделайте пароизоляцию. Уложите ЭППС на сухой песок.

Здравствуйте Александр. Извените что опять возвращаюсь к этой надоевшей вам теме о полах по грунту. У меня есть вопрос. Делаю полы по грунту в цокольном этаже г Симферополь . заглубление порядка 1.5м фундамент снаружи утеплен эппс.Отопление радиаторное. В свзи с этим было принято решение не утеплять полы. Грунт очень твердый суглинок на нем тонкий слой уплотненного щебня. Как вы считаете будет ли правильно если я сверху уложу пупырчатую мембрану (пупырками вверх) сетку 100х100х5 и залью бетонном М300 до уровня подбетонки фундаментной подушки (100мм). Вызывает сомнения как достичь уверенности по гидро и пароизоляции и расходу бетона. Може подсыпать под мембрану еще родного грунта (площадь заливки 110м2. подбетонка выступае на50мм открая подушки фудамента В7.5)
Второй вопрос тоже по полам но по ж/б плите вторго этажа. Заливали зимой ребята по свежему накрывали пленкой и потоптали бетон, довольно основательно. Также остались следы от камней которыми прижимали пленку. получились ямы и бугры сантиметров по 5 как лучше поступить? В нете нашел совет выровнять увлажненным гранотсевом (для выравнивания и шумоизоляции) и сделать чисовую стяжку. хотелось бы узнать ваше мнение по этому вопросу. Особенно мнением по шумоизоляции гранотсевом.
Зараннее благодарен.
Спасибо за ваши семинары.

Источник

Ошибки в полах по грунту, часть 1

Наше проектное бюро получает очень много заказов на аудит конструкций и готовых проектов. Удручает большое количество ошибок в конструкциях полов по грунту. В этой статье разберём основные из них, совершаемые в каменных домах.

Для иллюстрации ошибок воспользуемся лежащими в свободном доступе изображениями узлов, найденных по поиску в Яндексе (они будут со ссылками, чтобы не нарушать авторских прав). Они в целом повторяют и те ошибки, что мы видим в присланных на аудит проектах.

Рассмотрим первый случай:

Рис. 1. Узел с промерзанием по стыку на верхнем обрезе фундамента.

Чтобы понять, что в этом узле не так, построим карты тепловых полей:

Рис. 1.1. Карта тепловых полей для узла на рис.1 (утеплитель фундамента 50 мм).

Видим, что в углу возможны отрицательные температуры, что совершенно недопустимо для такого решения.

Улучшим немного узел на рис. 1, подняв утеплитель фундамента, чтобы он с нахлёстом заходил на стену:

Рис. 1.2. Карта полей с учётом нахлёста 10 см вертикального утеплителя толщиной 50 мм на стену.

Пытаемся дальше улучшить этот узел. Увеличиваем толщину внешнего утеплителя фундамента до 100 мм:

Рис. 1.3. Карта полей с учётом нахлёста 10 см вертикального утеплителя толщиной 100 мм на стену.

Как видно из карты, внешнее утепление уже даёт мало толка, потому что наш фундамент находится в контакте с грунтом основания, который даже если и будет защищён от промерзания, все равно будет иметь невысокую температуру: +2..3 градуса Цельсия. А поскольку бетон является довольно хорошим проводником тепла, весь фундамент будет иметь примерно такую же температуру. Верхний правый угол фундамента, практически выходящий в помещение, это — мостик холода, поэтому дальнейшее изолирование фундамента не даёт эффекта, нужно изолировать пол и все помещение от фундамента.

Подъём отметки пола относительно верхнего обреза фундамента начинает давать свои плоды:

Рис. 1.4. Карта полей с учётом подъёма плиты пола относительно обреза фундамента.

Но и тут картинка не самая лучшая, мы получили 9 градусов в углу при 20 градусах воздуха в помещении, т.е. имеем перепад температуры в 11 градусов, а СП 50.133300.2012 требует от нас перепад не более 2 градусов в этой зоне:

Такая разница в температуре воздуха и поверхности угла может привести к конденсация влаги (точка росы). Поэтому при конструировании полов по грунту рекомендуется придерживаться «правила 100 мм», прямо вытекающее из п. 5.2 СП 50.133300.2012:

Рис. 1.5. «Правило 100 мм».

Для того, чтобы понять, как это правило работает, надо построить мысленно окружность радиусом 100 мм с центром в нижнем углу плиты (стяжки) пола (красная линия). Окружность — это расстояние, которое должно быть от угла плиты пола до холодных конструкций (фундамента), причём это расстояние должно быть заполнено материалом с теплопроводностью не выше 0,05 Вт/м*С (пенополистирол). При такой толщине и такой теплопроводности мы получаем минимальное базовое нормативное сопротивление для конструктивного элемента, определённое в СП 50.133300.2012 как 2.1 (табл.3). Если же материал имеет большую теплопроводность, например 0.1-0.12 Вт/м*С (газобетон), расстояние должно быть пропорционально увеличено. На рис. 2 показаны две окружности с радиусами 100 и 200 мм, и мы видим, что очень значительный «кусок» угла фундамента попадает в зону 100 мм. Это и есть основная причина падения температуры угла.

Если посмотреть в разрезе «правила 100 мм» на любой из наших типовых узлов, то видно, что оно нами в целом выполняется:

Рис. 1.6. Проверка узла 1 на правило 100 мм.

На рисунке 3 показано, что лишь небольшой сектор окружности с радиусом 100 мм (красная), проведённой из нижней точки плиты пола, имеет контакт с холодными конструкциями через материалы с суммарной теплопроводностью всех слоёв выше 0,05 Вт/м*С (по линии оранжевой стрелки). Утечка тепла через эту зону будет незначительной в виду небольшой площади контакта.

С учётом «правила 100 мм» узел на рис. 1 должен был бы выглядеть вот так:

Рис. 7. Тепловая карта узла примыкания полов по грунту к фундаменту, вариант исполнения с учётом «правила 100 мм».

Второй случай, который бы хотелось рассмотреть, это в целом рабочее решение, но которое легко может стать потенциально проблемным:

Рис. 2. Утеплённый финский фундамент УФФ в комбинации с полами по грунту.

К самому фундаменту на рис. 2 вопросов нет, это классический УФФ, но сочетание с полами здесь далеко от идеального. Узел в целом лучше, чем рассмотренный выше, за счёт того, что утепление торца плиты пола делается более толстым слоем утеплителя. Если в узле на рис. 1 тонкая прослойка утеплителя между плитой и фундаментом играет роль деформационной ставки, и обычно бывает не более 20 мм, то в классическом УФФ утепление делается не менее 50 мм. Вот узел УФФ от нашего проектного бюро:

Рис. 2.1. Узел УФФ от m-project33.

Узел на рис.2.1 не полностью соответствует правилу 100 мм, но вся конструкция в целом укладываются в нормативные требования к расчётам теплового сопротивления узлов и конструкций. Итоговое качество этого узла «в натуре» будет определяться прежде всего толщиной вставки между плитой и фундаментом, а также величиной свеса стены вовнутрь. Кроме этого, нужно будет отдельно решать вопрос с дверным проёмом на улицу. Поэтому авторам рис.2 хотелось бы порекомендовать при исполнении этих улов обращать на это внимание. Отметим, что этот узел на рис. 2.1 сочетания УФФ и полов по грунту более уместен для деревянных и каркасных строений, где поднятие отметки пола относительно верхнего обреза фундамента проблематично ввиду запирания дерева массивом плиты пола.

Потенциальные проблемы узла на рис. 2 и 2.1 становятся лучше видны на вот таком примере (ситуация 3):

Рис. 3. 3д-вид сочетания бетонного ростверка и полов по грунту.

Визуально это решение не сильно отличается от комбинации «УФФ+полы по грунту», рассмотренной выше. Отличия тем не менее есть:

  1. Это бетонный армированный ростверк, поэтому он будет обладать большими размерами по ширине, чем кладка из керамзитобетонных блоков;
  2. Теплопроводность бетона примерно в 5 раз выше, чем у керамзитобетона.

Если начать рассматривать этот узел в комплексе по стеной, то с большой вероятностью окажется, что внутренний верхний угол фундамента «въедет» вовнутрь помещения и будет служить областью пониженных температур. И ещё больше проблемы с этим узлом становятся очевидны в дверных проёмах. Поскольку пол находится на одной отметке с верхним обрезом фундамента, то дверную коробку приходится ставить прямо на ростверк. Возможности нормально утеплить нижний брус и область примыкания пола к дверной коробки при таких размерах не будет. Если же посмотреть на решение от нашей проектной организации, показанное на рис. 1.6, то видно, что дверная коробка ставится на блок газобетона, т.е. проблем с её утеплением не возникает.

Вот такая картинка ходит по сети, причём так активно, что не удалось найти первоначального автора, чтобы как-то соблюсти авторские права и дать на него ссылку:

Рис. 4. Картина неизвестного художника.

Здесь не то что уголок фундамента застенчиво выглядывает в помещение, тут он весь смотрит вовнутрь, стоя в полный рост.

Вот такая ошибка была обнаружена в обсуждаемой конструкции на одном из форумов. Хочется надеяться, что автора вовремя подкорректировали специалисты, принимавшие участие в обсуждении:

Рис. 5. Обсуждаемая конструкция.

Кроме обсуждаемого выше дефекта с примыканием пола к внешней стене, здесь есть ещё и недостаток со внутренними. Тут стяжка пола лежит прямо на фундаменте, на внутренней ленте. Тем, кто хочет возразить, что эта лента в теплом контуре и такое примыкание нестрашно, можно порекомендовать представить эту конструкцию в месте, где внутренняя лента соединяется с внешней. А также учесть, что у ленты внутри теплого контура в любом случае температура не очень высокая, поэтому мы имеем локальную область с более низкими температурами. Если будет в этом месте на полу лежать керамическая плитка, то будет ощущаться холод и ситуацию спасет только теплый пол.

В заключение хочется отметить, что довольно много встречается в интернете и грамотных решений по узлам примыкания полов и цокольных перекрытий к фундаменту, например, такие:

Рис. 6. Пример удачной конструкции узла примыкания полов по грунту к фундаменту.

Источник

Оцените статью
Строительство и ремонт