Удельное сцепление грунта основания фундамента

Удельное сцепление (с) глинистых грунтов (понятие и значение)

Таблица нормативных значения удельного сцепления и угла внутреннего трения глинистых (супесчаных, суглинистых) грунтов, приведена в таблице А.2 приложения СП 22.13330.2016 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*.

Выделим нормативные значения удельного сцепления глинистого грунта.

Удельное сцепление грунта, сn, кПа, при коэффициенте пористости, равном

0,45 0,55 0,65 0,75 0,85 0,95 1,05 Супесь твердая и полутвердая от 0 до 0,25 21 17 15 13 — — — Супесь тугопластичная и мягкопластичная от 0,25 до 0,75 19 15 13 11 9 — — Суглинки твердые и полутвердые от 0 до 0,25 47 37 31 25 22 19 — Суглинки тугопластичные от 0,25 до 0,5 39 34 28 23 18 15 — Суглинки мягкопластичные от 0,5 до 0,75 — — 25 20 16 14 12 Глины твердые и полутвердые от 0 до 0,25 — 81 68 54 47 41 36 Глины тугопластичные от 0,25 до 0,5 — — 57 50 43 37 32 Глины мягкопластичные от 0,5 до 0,75 — — 45 41 36 33 29

Для промежуточных значений коэффициентов пористости (е) глинистого грунта, значения удельного сцепления определяются интерполяцией (Онлайн-Интерполятор)

Источник

Удельное сцепление грунта

Сцепление грунта (с) – это один из параметров, от которого зависит прочность грунта при сдвиге. Его вычисляют по формуле соотношением вертикального и касательного напряжений или определяют на графике. Измеряется сцепление в килопаскалях (кПа).

Читайте также:  Отсечная гидроизоляция фундамента технониколь укладка

На показатель влияет тип химических связей в породе. Свойство характерно для глинистых и скальных грунтов. Устойчивость к сдвигу несвязных дисперсных грунтов обеспечивает трение между отдельными зернами , поэтому сцепление в этом случае играет минимальную роль.

От чего зависит сцепление грунта и на что оно влияет

Сцепление обеспечивают химические связи между молекулами минеральных компонентов грунтов.

Основные разновидности связей:

  • Коллоидные – это электрохимические контакты между молекулами минералов и воды
  • Цементационные – связи между частицами и минералами, которые играют роль цемента
  • Кристаллизационные – связи между отдельными молекулами, образующими кристаллические решетки

Наименьшей силой обладают коллоидные или водно-коллоидные связи. Больше всего на них влияет влажность. Но это единственный тип структурных связей, способный восстанавливаться после разрушения. Встречаются они в глинистых грунтах.

Цементационные связи достаточно прочные. Они характерны для литифицированных (окаменевших) глин и некоторых скальных грунтов. После разрушения такие связи не восстанавливаются. Но они могут опять возникать в массивах через несколько десятилетий или столетий.

Кристаллизационные связи присутствуют в скальных грунтах и некоторых глинистых. Они прочные , но необратимо разрушаются при нагрузках. Кристаллические решетки в обычных условиях не восстанавливаются, так как для их образования нужны высокие температуры и давление.

Прочные контакты между элементами обеспечивают упругость грунта – способность после уменьшения нагрузки восстанавливать свой объем и форму. Коллоидные контакты даже после смещения частично возобновляются. Это увеличивает способность грунтов сопротивляться сдвигу.

На сцепление влияют и другие характеристики:

  • Пористость и плотность
    Сцепление рыхлого грунта с большим количеством пор всегда слабее.
  • Влажность
    При высокой влажности вокруг мелких глинистых частиц образуются пленки воды. Чем больше их толщина, тем слабее связи между зернами и агрегатами, а значит – и сцепление. Влажность влияет в основном на показатели глинистого грунта.
  • Минеральный состав
    Минералы грунта определяют тип связей между его химическими элементами. Самые прочные они у магматических и метаморфических пород , образованных в недрах земли при высоких температурах и давлении. Несколько ниже сцепление у осадочных скальных и глинистых связных грунтов.

Сцепление бывает:

  • Структурным – оно обеспечивается химическими контактами между отдельными элементами грунта; присутствует в нем изначально
  • Удельным – оно определяется во время испытаний на сдвиг и напрямую зависит от вертикальных нагрузок

Сцепление обеспечивает устойчивость грунта при воздействии касательных сдвигающих сил, влияет на прочность и несущую способность. При высоком показателе грунтовый массив становится надежным основанием под фундаментом или дорожным полотном.

Методы определения удельного сцепления

Показатель определяют в ходе испытаний грунтов на устойчивость к сдвигу, в лаборатории или полевых условиях.

Лабораторные методы испытания

В лаборатории пользуются несколькими методами:

  • Одноплоскостным срезом – быстрым неконсолидированным и медленным консолидировано-дренированным
  • Трехосным сжатием – неконсолидировано-недренированным, консолидировано-недренированным, консолидировано-дренированым

При использовании консолидированных методик грунт дополнительно уплотняют. При дренированном испытании влагу отводят через систему дренажей , при недренированном берут водонасыщенный материал или с естественной влажностью.

Подробнее о лабораторных методиках вы можете прочитать в статье Прочность грунта на сдвиг. Здесь же мы расскажем, как вычисляется удельное сцепление.

Одноплоскостный срез

Этим методом определяют два типа напряжения – нормальное, или вертикальное (σ) и горизонтальное, или касательное (τ). Их максимальные значения соответствуют силе давления, при которой происходит сдвиг или смещение частиц относительно друг друга. Для определения сцепления нужно провести несколько опытов. Полученные данные отмечают на графике. Участок, который находится между нулевой точкой (местом пересечения осей) и местом начала кривой на оси ординат, соответствует силе сцепления.

Показатель вычисляют и по формуле:

Когда обрабатывают экспериментальные точки графика, проводят более сложные вычисления:

Трехосное сжатие

По этой методике вычисляют эффективное значение удельного сцепления (с’).
Используется уравнение:

Полевые методики испытаний

Испытание грунтов в массиве дает более приближенные к естественным условиям результаты. Чаще всего это делают в карьерах, подземных выработках, строительных котлованах перед закладкой фундамента.

Сцепление в полевых условиях определяют методом среза образцов. Прямо в выработке с помощью кольца от массива отделяют определенный объем грунта. Затем с помощью установки с анкерным устройством делают срез. Деформации фиксируют измерительными приборами. Детальнее о способе проведения опыта вы можете прочитать в статье Угол внутреннего трения грунта.

Удельное сцепление определяется после построения графика. На нем отмечают данные касательных и вертикальных напряжений , полученные на одном и том же массиве не менее, чем в трех опытах. Величиной сцепления будет отрезок на оси ординат от нулевой точки до начала линии графика.

Готовые показатели

На практике часто пользуются уже готовыми данными для разных типов грунтов. Они прописаны в СП 22.13330.2016. Показатели сцепления представлены в таблицах.

Таблица удельного сцепления песков разной крупности

Таблица удельного сцепления глинистых грунтов

Как мы видим из приведенных таблиц, у песков сцепление очень слабое. В глинистых грунтах показатель намного выше, но он уменьшается с увеличением пористости и текучести.

Практическое значение показателя

Удельное и структурное сцепление больше всего влияет на прочность скальных и глинистых грунтов при сдвиге. У песков этот параметр больше зависит от угла внутреннего трения. Сцепление лишь незначительно влияет на прочность пылеватых и мелких песков.

Сцепление можно определить в ходе опытов или взять готовую цифру из нормативных документов. Показатель используется для расчета напряжений при испытаниях на сдвиг.

Информация о сцеплении грунтов необходима при:

  • Закладке фундаментов и возведении домов любого типа
  • Строительстве промышленных объектов
  • Прокладке автомобильных трасс, железных дорог, взлетных полос аэродромов
  • Прокладке грунтовых дорог , обустройстве пешеходных зон
  • Строительстве дамб, плотин, трубопроводов, путепроводов
  • Разработке карьеров и подземных шахт
  • Укреплении речных берегов и горных склонов
  • Прогнозировании горных обвалов, размыва берегов во время наводнений

Подробно о всех перечисленных пунктах, а также о расчете напряжений при испытаниях на сдвиг вы можете прочитать в статье Прочность грунта на сдвиг.

Определение удельного сцепления и других прочностных характеристик грунта требует опыта и специального оборудования. Поэтому услугу по определению этого показателя нужно заказывать у специалистов.

Источник

Пример расчета ленточного и столбчатого фундаментов

Уважаемые коллеги, продолжаем рассматривать пример расчета ленточного фундамента с помощью программы ФОК Комплекс, в этот раз мы рассмотрим расчет ленточного и столбчатого фундаментов.

Перед вводом данных в программу ФОК-Комплекс я стараюсь придерживать такого порядка действия:

1. Определяюсь с отметками, прорисовываю расположения фундаментов, ниже приведен пример:

2. Вычисляю расчетное сопротивление грунта (вручную или по программе), для того что бы проверить совпадает ли данное значение с результатом в программе ФОК Комплекс, ниже приведен пример:

СП 22.13330.2011 Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*

Определение расчетного сопротивления грунта основания

5.6.7 При расчете деформаций основания фундаментов с использованием расчетных схем, указанных в 5.6.6, среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, определяемого по формуле

где gс1и gс2— коэффициенты условий работы, принимаемые по таблице 5.4;

k — коэффициент, принимаемый равным единице, если прочностные характеристики грунта (jII и сII) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения Б;

k z — коэффициент, принимаемый равным единице при b 3 ;

g’II — то же, для грунтов, залегающих выше подошвы фундамента, кН/м 3 ;

сII — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента (см. 5.6.10), кПа;

d1 — глубина заложения фундаментов, м, бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле (5.8). При плитных фундаментах за d1принимают наименьшую глубину от подошвы плиты до уровня планировки;

db — глубина подвала, расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом глубиной свыше 2 м принимают равным 2 м);

здесь hs — толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

hcf — толщина конструкции пола подвала, м;

gcf — расчетное значение удельного веса конструкции пола подвала, кН/м 3 .

При бетонной или щебеночной подготовке толщиной hn допускается увеличивать d1 на hn.

Примечания:

  1. Формулу (5.7) допускается применять при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью А, значение bпринимают равным .
  1. Расчетные значения удельного веса грунтов и материала пола подвала, входящие в формулу (7) допускается принимать равными их нормативным значениям.
  1. Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием, например, фундаменты прерывистые, щелевые, с промежуточной подготовкой и др.
  2. Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать, применяя коэффициент kd по таблице 5.6.
  3. Если d1>d (d— глубина заложения фундамента от уровня планировки), в формуле (5.7) принимают d1 = dи db = 0.
  4. Расчетное сопротивления грунтов основания R, определяемое по формулам (В.1) и (В.2) с учетом значений R0 таблиц B.1-В.10 приложения В, допускается применять для предварительного назначения размеров фундаментов в соответствии с указаниями разделов 5-6.

Исходные данные

Основание фундаментом являются — Супесь лессовидная просадочная низкопористая твердая (ИГЭ 2)

сII= 0,6 т/м 2 ; d1 = 2,30 м + 0,10 м * 2,00 т/м 3 / 1,653 т/м 3 = 2,30 м + 0,121 м = 2,421 м;

R = (1,25 х 1,00) / 1,00 * [0,78 * 1,00 * 3,00 м * 1,800 т/м 3 + 4,11 * 2,421 м * 1,653 т/м 3 +

+ (4,11 – 1,00) * 1,05 м * 1,653 т/м 3 + 6,67 * 0,6 т/м 2 ] = 1,25 * (4,212 т/м 2 + 16,44786243 т/м 2 +

+ 5,3978715 т/м 2 + 4,002 т/м 2 ) =37,5746674125 т/м 2 .

Расчетное сопротивление грунта определяется согласно СНиП 2.02.01-83

‘Основания зданий и сооружений’ по формуле 7:

ВВЕДЕННЫЕ ДАННЫЕ:

Ширина подошвы фундамента b= 3 м

Глубина заложения фундамента d= 3.35 м

Гибкая конструктивная схема здания

Длина здания L= 0 м

Высота здания H= 0 м

Здание с подвалом — фундамент под наружную стену (колонну)

Толщина слоя грунта выше подошвы фундамента со стороны подвала hs= 2.3 м

Толщина конструкции пола подвала hcf= 0.15 м

Удельный вес материала пола подвала ycf= 2.2 тс/м3

Тип грунта: пылевато-глинистые, а также крупнообломочные с пылевато-глинистым заполнителем с

показателем текучести грунта или заполнителя IL 2 ;

  • давление ветра — 38 кг/м 2 ;
  • основанием является грунт II категории по сейсмическим свойствам.

    площадка строительства — 7 баллов.

    Значение характеристик грунтов засыпки, уплотненных согласно нормативным документам с коэффициентом уплотнения не менее 0,95 от их плотности в природном сложении, допускается устанавливать по характеристикам тех же грунтов в природном залегании.

    Нагрузки на столбчатые и ленточные фундаменты получены из программы ПК ЛИРА 10.4.

    Ниже выдержки из некоторых таблиц исходных данных.

    Производим расчет, по результатам расчета начальное просадочное давление во всех слоях просадочного грунта не превышает давления на основание, вводим характеристики грунта при полном водонасыщении в таб.2.1 и 2.3, кроме того под фундаментами выполняем песчаную подушку из песка средней крупности.

    Выводы

    По результатам расчета ленточного и столбчатого фундаментов, расчетное сопротивление грунта R = 18,56 т/м 2 .

    Среднее давление под подошвой фундаментов не превышает 14,79т/м2, что меньше расчетного сопротивления грунта R = 18,59т/м 2 .

    Начальное просадочное давление во всех слоях просадочного грунта не превышает давления на основание, в расчете приняты характеристики грунтов при полном водонасыщении.

    Максимальные деформации фундаментов составляют S = 0,065м, что не превышает установленных значений по приложению 4.[2] Su = 0,08м.

    Относительные деформации фундаментов составляют Sdel =0,0007, что не превышает установленных значений по приложению 4.[2] Sudel = 0,002.

    Источник

    Оцените статью
    Строительство и ремонт