Фундаменты мелкого заложения гибкие

10.4. Основные положения проектирования гибких фундаментов

Ленточные фундаменты большой длины, загруженные колоннами, расположенными на значительных расстояниях, балки на грунте, а также большинство плитных фундаментов относятся к гибким фундаментам.

В отличие от жестких фундаментов, собственные деформации которых ничтожно малы по сравнению с деформациями грунта, деформации гибких фундаментов соизмеримы с деформациями основания, в результате этого гибкий фундамент и его основание работают под нагрузкой совместно, образуя единую систему, а реактивное давление грунта изменяется по сложному закону, существенно отличающемуся от линейного. Определение этого давления из расчета совместного деформирования фундамента с основанием является основной задачей при проектировании гибких фундаментов. Задача довольно сложная, поскольку в общем случае реактивное давление на фундамент зависит от жесткости фундамента, его размеров и формы, характеристик деформируемое™ основания, величины, характера и расположения нагрузки. Сюда следует добавить и жесткость надземной части сооружения.

Подробно методы расчеты балок и плит на упругом основании изложены в курсах «Строительная механика» и «Железобетонные конструкции». Ниже будут рассмотрены основные положения этих расчетов, а также их особенности, связанные со спецификой работы грунтов как линейно деформируемых тел.

Расчет ленточных фундаментов. В задачу расчета гибкого ленточного фундамента входят определение реактивного давления грунта по подошве фундамента, вычисление внутренних усилий, действующих в фундаменте, установление размеров поперечного сечения фундамента и его необходимого армирования.

Читайте также:  Если фундамент дома не весь по периметру

При расчете реактивного давления грунта гибкий ленточный

фундамент рассматривается как балка на упругом основании, изгибающаяся под действием приложенных к ней внешних нагрузок. Если пренебречь трением между подошвой фундаментной балки и грунтом основания, что идет в запас прочности, дифференциальное уравнение ее изгиба можно представить в виде

где EL— жесткость балки; z — прогиб балки в точке с координатой х; рх — реактивное давление в той же точке.

В дифференциальном уравнении (10.18) имеются две неизвестные функции: одна — уравнение изогнутой оси балки z=f(х), вторая — закон распределения реактивных давлений грунта рх=f(х), поэтому решение может быть получено лишь при условии составления второго уравнения, в котором будут связаны между собой осадки различных точек балки и реактивное давление грунта.

В зависимости от гипотезы, принятой для установления второго уравнения, различают два основных метода расчета балки, лежащей на упругом основании: метод местных упругих деформаций и метод упругого полупространства. Оба метода базируются на одноименных моделях грунтового основания, рассмотренных в § 5.2, там же определена и область их применения для практических инженерных расчетов.

Уравнение (10.18) содержит жесткость фундамента Е1, что требует предварительного назначения размеров его сечения. Это делают исходя из схемы линейного распределения реактивных усилий, принимая равномерное или трапециевидное распределение давления по подошве. Поясним сказанное на примере.

Рис. 10.21. Предварительный подбор сечения фундаментной балки

На рис. 10.21 показана фундаментная балка, загруженная системой сил, в результате чего по ее подошве действует реактивное давление грунта рх, изменяющееся по какому-то сложному закону. Заменяя криволинейную эпюру распределения реактивных давлений рх линейной трапециевидной, определяем краевые значения давления р1и р2 по формуле внецентренного сжатия (5.7), которая для рассматриваемого случая будет иметь вид

А — площадь подошвы фундаментной балки; МO — момент всех сил относительно центра тяжести подошвы фундаментной балки г

Определив краевые значения прямолинейной эпюры давлений P1 и Р2 загружаем ею рассматриваемую фундаментную балку, как внешней нагрузкой, и по правилам строительной механики строим эпюру изгибающих моментов Мх. Определив максимальное значение Мх, находим необходимый по условию прочности момент сопротивления балки WX, а уже по нему подбираем предварительное сечение фундаментной балки и устанавливаем ее жесткость Еl.

Расчет по методу местных упругих деформаций. Как указывалось в § 5.2, предпосылкой расчета гибких фундаментных балок по этому методу является гипотеза о том, что осадка в данной точке основания не зависит от осадки других точек и прямо пропорциональна давлению в этой точке (гипотеза Фусса — Винклера), что выражается зависимостью (5.3)

где СZ— коэффициент пропорциональности, называемый коэффициентом постели, ориентировочно равный: (0,3. 1). 10 4 кН/м3 при очень слабых грунтах, (1. 3).10 4 кН/м3 при слабых грунтах, (3. 8) • 10 кН/м при грунтах средней плотности; Z — осадка в точке определения реакции рх.

Подставляя эту зависимость в дифференциальное уравнение (10.18), получим

Eld 4 z/dx 4 = -СZZ,. (10.19)

Уравнение (10.19) известно как дифференциальное уравнение изгиба балок на упругом основании по методу местных упругих деформаций. Решение этого уравнения имеет вид

. (10.20)

где х — текущая координата; z — прогиб балки в точке с координатой х;

=

Ь — ширина фундаментной балки.

Коэффициент а называют линейной характеристикой балки на упругом основании. При l 3 — как длинные гибкие. Естественно, что указанные границы условны поэтому в практических расчетах допустимы небольшие отклонения.

Постоянные интегрирования С1, С2. Сз и С4 определяются изначальных условий деформирования, которые зависят от категории гибкости балки. Так, одним из начальных условий деформирования для короткой жесткой балки, загруженной в центре сосредоточенной силой, будет постоянство деформации грунта вдоль всей ее длины (z=const), а в случае длинной гибкой балки при таком же загружении начальным условием деформирования будет отсутствие прогиба на ее концах (Z-1/2=Z+1/2=0).

Беря последовательно производные от выражения (10.20), определяют необходимые для конструирования фундаментной балки значения изгибающих моментов Мx и поперечных сил QX в различных ее сечениях. Если уточненные по известным значениям Мx и QX размеры сечения балки значительно меняют ее жесткость, то расчет повторяется.

Модель местных упругих деформаций рекомендуется применять для расчета гибких фундаментных балок, работающих в условиях плоской задачи на сильно сжимаемых грунтах (Е 2 ) — коэффициент жесткости основания, кПа; R — расстояние от точки приложения силы Р до точки, в которой определена осадка ZX , м.

При определении осадок поверхности основания от действия равномерно распределенных нагрузок уравнения (10.21) и (10.22) интегрируются по площади загружения.

Решая дифференциальное уравнение изогнутой оси балки (10.18) совместно с одним из уравнений (10.21) или (10.22), находят реактивный отпор грунта по подошве гибкого фундамента, изгибающие моменты и поперечные силы, действующие в его сечениях.

Практические расчеты ведутся чаще всего с использованием готовых таблиц, которые составлены для фундаментных балок различной относительной гибкости, при различном характере и размещении нагрузок.

Относительная гибкость фундаментной балки, работающей в условиях плоской задачи, характеризуется показателем гибкости t, определяемым по формуле (5.1):

.

Если фундаментная балка работает в условиях пространственной задачи, показатель гибкости определяется по формуле

(10-23)

где Е — модуль деформации грунта, кПа; v — коэффициент Пуассона грунта; Еk— модуль упругости материала балки, кПа; l, b — полудлина и полуширина фундаментной балки, м; h — высота балки, м.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Назначение фундаментов зданий и сооружений и их основные типы. Классификация фундаментов мелкого заложения на естественном основании.

Технологии современного строительства предусматривают применение различных типов фундаментов. В зависимости от глубины заложения (расстояния от подошвы до поверхности почвы) они бывают глубокого (ФГЗ) и мелкого заложения (ФМЗ)

Технологии современного строительства предусматривают применение различных типов фундаментов. В зависимости от глубины заложения (расстояния от подошвы до поверхности почвы) они бывают глубокого (ФГЗ) и мелкого заложения (ФМЗ).

ФМЗ имеют глубину заложения, не превышающую их учетверенной ширины. Они могут обеспечить прочную основу сооружения на достаточно сложных грунтах, включая пучинистые. При этом требуют существенно меньших затрат на строительство, чем ФГЗ.

Конструкция

Выделяются следующие конструктивные типы фундаментов мелкого заложения:

  • отдельно стоящие (столбчатые);
  • ленточные;
  • плитные (сплошные);
  • массивные.

Столбчатые фундаменты мелкого заложения представляют собой столбы из кирпича, бетона или другого материала. Если такая конструкция предназначена под стену, то по сверху столбов устраивается обвязка, на которую опираются стены. Вместо обвязки может быть установлен монолитный железобетонный пояс (ростверк), придающий конструкции жесткость и устойчивость.

Типы ленточных ФМЗ:

  • монолитный – должен иметь два пояса арматуры вдоль верхней и нижней плоскости;
  • сборный – обычно монтируется из фундаментных стеновых блоков (ФБС), а в основании его лежат бетонные подушки;
  • сборно-монолитный – поверх блоков устраивается монолитный пояс, верхний уровень которого совпадает с уровнем земли;

Ленточные сборные фундаменты могут быть прерывистыми. При их устройстве фундаментные подушки укладываются с промежутками, поэтому они дешевле обычных ленточных на 10-15%.

Ленточные фундаменты мелкого заложения широко применяется при малоэтажном строительстве.

Плитный ФМЗ является самым надежным вариантом. Подходит даже для самых пучинистых грунтов. Это монолитная железобетонную плита, покрывающая всю площадь здания. Толщина плиты при малоэтажном строительстве составляет 15-30 см. Плита, благодаря большой площади, равномерно снижает давление на почву, поэтому может применяться на слабонесущих и водонасыщенных грунтах.

Массивные ФМЗ выполняются под тяжелые, но небольшие по плану сооружения, например, башни, дымовые трубы.

Основные виды фундаментов мелкого заложения

Технологии современного строительства предусматривают применение различных типов фундаментов. В зависимости от глубины заложения (расстояния от подошвы до поверхности почвы) они бывают глубокого (ФГЗ) и мелкого заложения (ФМЗ)

Технологии современного строительства предусматривают применение различных типов фундаментов. В зависимости от глубины заложения (расстояния от подошвы до поверхности почвы) они бывают глубокого (ФГЗ) и мелкого заложения (ФМЗ).

ФМЗ имеют глубину заложения, не превышающую их учетверенной ширины. Они могут обеспечить прочную основу сооружения на достаточно сложных грунтах, включая пучинистые. При этом требуют существенно меньших затрат на строительство, чем ФГЗ.

Параметры классификации

Классификация фундаментов мелкого заложенияможет производиться по одному из следующих признаков:

  • форма поперечного сечения;
  • способ возведения;
  • вид статической работы;
  • конструкционное решение;
  • материал изготовления;

Форма

По форме сечения ФМЗ подразделяются на:

  • трапециевидные;
  • прямоугольные;
  • ступенчатые.

Оптимальная форма – трапециевидная. При этом предельный угол между боковой гранью и вертикалью (угол распределения давления) для бетона равен 45°, для бутобетона и бута – 30°. Если угол больше, то напряжения, вызываемые растягивающими и скалывающими силами, будут иметь опасную величину.

Способ изготовления

Фундаменты мелкого заложения по способу изготовления подразделяются на:

Монолитные возводятся на месте. Обычно используется жидкий бетон. Сборные конструкции составляются из отдельных элементов. Например, из бетонных блоков, изготовленных в производственных условиях.

Вид статической работы

По этому параметру ФМЗ подразделяются на:

Жесткие могут выдерживать только силы сжатия. Гибкие хорошо противостоят не только сжатию, но и растяжению. Это железобетонные фундаменты. Все остальные – жесткие.

Конструкция

Выделяются следующие конструктивные типы фундаментов мелкого заложения:

  • отдельно стоящие (столбчатые);
  • ленточные;
  • плитные (сплошные);
  • массивные.

Материалы

Виды фундаментов мелкого заложения, определяемые материалом изготовления:

  • железобетонные;
  • бетонные;
  • бутобетонные;
  • из каменных материалов (кирпич, бут).

Бут – это природный материал, представляющий собой куски известняка или гранита, которые имеют довольно большую прочность. Бутобетон – вид бетона, в качестве наполнителя используется бут.

В современном строительстве ФМЗ чаще всего бывают бетонными и железобетонными.

К фундаментам мелкого заложения относят фундаменты с глубиной заложения до 4 м. Деление фундаментов по глубине заложения связано собственно с размером глубины заложения фундамента и с условиями работы грунтового основания под нагрузкой и способами производства работ при их устройстве. У фундаментов мелкого заложения потеря несущей способности грунтового основания связано с образованием около фундамента с одной или с двух сторон холмиков выпирания грунта. Такого явления у фундаментов глубокого заложения не наблюдается. Потеря несущей способности грунтового основания для этих фундаментов вызывает изменение структуры грунта внутри грунтового массива. Кроме того, фундаменты мелкого заложения, как правило, возводят в котлованах, предварительно отрытых на всю глубину заложения фундамента.

Наиболее распространенными в современном строительстве являются железобетонные, бетонные и бутобетонные фундаменты.

Применительно к фундаментам следует применять тяжелый конструкционный бетон со средней плотностью от 2200 до 2500 кг/м3. Допускается применять бетон мелкозернистый средней плотности свыше 1800 кг/м3. Класс бетона по прочности на сжатие рекомендуется применяется не ниже В15. При соответствующем обосновании допускается применение бетона класса В20. Марка бетона по водонепроницаемости назначается в соответствие с СП 52-101 «Бетонные и железобетонные конструкции без предварительного напряжения арматуры» [7]. Так, например, при возможном эпизодическом воздействии температуры ниже 0 °С, для фундаментов (конструкция, находящаяся в грунте) марка бетона по водонепроницаемости W не нормируется. При проектировании бетонных и железобетонных фундаментов, предназначенных для эксплуатации в агрессивной среде, марка бетона по водонепроницаемости назначается в соответствие со СНиП 2.03.11-85 «Защита строительных конструкций от коррозии» [6] и должна быть не менее W4.

По способу изготовления различают монолитные бетонные и железобетонные фундаменты и сборные фундаменты. Монолитные фундаменты изготавливаются на строительной площадке, сборные – на строительной площадке монтируются (собираются) из конструкционных элементов, сделанных на предприятиях строительной индустрии. Существуют и смешанные сборно-монолитные фундаменты, когда одна, как правило, нижняя часть фундамента изготавливается непосредственно по месту ее расположения, а другая, верхняя – монтируется.

Под подошвой фундаментов делается специальная подготовка. Рекомендуется под монолитными фундаментами независимо от подстилающих грунтов (кроме скальных) предусматривать устройство бетонной подготовки толщиной 100 мм и выступающей за грани подошвы фундамента на 100 мм. Бетон подготовки под подошвой монолитного фундамента принимается класса В10 [12]. Толщину защитного слоя бетона для рабочей арматуры подошвы фундаментов при наличии бетонной подготовки принимают не менее 40 мм и не менее диаметра стержня рабочей арматуры.

Допускается применение щебеночной или песчаной подготовки с цементной стяжкой.

При обосновании допускается бетонирование фундаментов без подготовки. В этом случае толщину защитного слоя бетона для рабочей арматуры подошвы назначают не менее 70 мм.

При сборных фундаментах устраивают подготовку из песка или цементного раствора.

Для защиты подошв фундаментов, расположенных в уровне агрессивных грунтовых вод (с учетом возможности их повышения), необходимо предусматривать:

· в кислых слабо- и среднеагрессивных средах — устройство щебеночной подготовки толщиной 100—150 мм из плотных изверженных пород с последующей укладкой слоя кислотостойкого асфальта, а в сильноагрессивных кислых средах — дополнительно по кислотостойкому асфальту наклеивать два слоя рулонной изоляции с последующей укладкой слоя кислотостойкого асфальта;

· в сульфатных слабо- и среднеагрессивных средах — устройство щебеночной подготовки толщиной 100—150 мм с проливкой горячим битумом до полного насыщения с последующей подготовкой из бетона или цементно-песчаного раствора или слоя горячей асфальтовой мастики, а для сильноагрессивных сульфатных сред — подготовки из бетона или цементно-песчаного раствора на сульфатостойком портландцементе.

Характеристики агрессивных сред определяются по СНиП 2.03.11.

По характеру работы железобетонные фундаменты могут быть жесткими или гибкими. В жестких фундаментах линия уступов с вертикалью образует угол, который не превышает угол образования пирамиды продавливания от вертикальных нагрузок (рисунок 24). При этом в теле фундамента не возникает значительных растягивающих напряжений.

По форме фундаментов в плане и виду конструкций, опирающихся на фундаменты, фундаменты подразделяют на отдельно стоящие, ленточные под стены здания, ленточные под колонны, сплошные (плитные) под стены здания и сплошные под колонны.
Отдельные фундаменты
(рисунок 25) устраивают под колонны и стены. В последнем случае для возведения стен под ними устанавливают фундаментные балки (рисунок 26) или цокольные панели, опирающиеся на фундаменты (рисунок 27).
Ленточные фундаменты под колонны
(рисунок 28) воспринимают нагрузку от ряда колонн. Иногда под сетку колонн делают ленточные фундаменты в двух направле­ниях (перекрестные ленты). Ленточные фундаменты устраива­ют для уменьшения давлений на грунты основания и уменьшения неравномерностей осадок отдельных колонн.

Ленточные фундаменты под стены

(рисунок 29) сохраняют геометрию стен здания в плане. В зданиях с подвальными помещениями и техническими подпольями ленточные фундаменты выполняют функцию стен заглубленных помещений.

(рисунок 30) устраивают под всем соору­жением или под его частью в виде железобетонных плит под сетку колонн и стен. Такие плиты работают на изгиб в двух взаимно перпендикулярных направлениях. Сплошные фундаменты существенно уменьшают давления на грунты основания по сравнению с отдельными фундаментами и, при значительной толщине фундаментной плиты, способствуют уменьшению неравно­мерности осадки.

Выбор конструкции

При выборе конструкции фундамента мелкого заложения необходимо учитывать ряд факторов. Большое значение имеют геологические условия: рельеф, тип грунта, уровень грунтовых вод. Фундамент должен обладать достаточной прочностью, а также иметь хорошую устойчивость на опрокидывание и скольжение. Поэтому должны учитываться вес здания и его конструктивные особенности.

Грунты, лежащие в основании фундамента, рассчитываются по несущей способности и по деформациям. При этом необходимо учитывать воздействие таких факторов, как силы морозного пучения, а также присутствие грунтовых и поверхностных вод, от чего зависят физико-механические характеристики грунтов. Следует учесть местные условия строительства и опыт эксплуатации строений в инженерно-геологических условиях аналогичного типа.

Глубина заложения должна обеспечивать заглубление фундамента в несущий грунт как минимум на 10-15 см. Следует избегать такой ситуации, когда непосредственно под фундаментом расположен грунт, прочностные и деформационные качества которого значительно хуже, чем у подстилающего слоя. Рекомендуется, чтобы глубина заложения была меньше уровня грунтовых вод.

Различные типы фундаментов мелкого заложения существенно различаются по стоимости материалов и трудозатратам. Следует учитывать и эти факторы. Тогда выбранный вариант обеспечит необходимые эксплуатационные характеристики фундамента при оптимальных затратах на его возведение.

Плитный фундамент

Плитные фундаменты применяют при слабых грунтах, а также при высоком уровне грунтовых вод. Они представляют собой сплошную монолитную плиту, которую усиливают железобетонным каркасом. Используя плитные фундаменты, можно значительно уменьшить просадку грунта. Для его обустройства используется армированная железобетонная плита, которая укладывается на грунт на определенную глубину. При изготовлении плита армируется металлическими прутьями с диаметром от 12 до 25мм, а ее толщина находится в пределах от 30 до 100 см. Фундаментная плита может изготавливаться только в монолитном виде с использованием бетон класса В15-В25.

Перед укладкой плиты в предварительно вырытой траншее выравнивают подстилающий грунт, используя для этого малопрочный бетон класса В7.5 или песок.

Основное достоинство плитного фундамента заключается в том, что он равномерно перераспределяет нагрузки по всей площади, воспринимая при этом как горизонтальные, так и вертикальные деформации.

Плитные фундаменты рекомендуется применять на слабых грунтах, к примеру:

  • Водонасыщенных песках;
  • Плывунах;
  • Насыпных грунтах.

На данном типе фундаментов допускается возводить 2-3 этажные здания с нагрузкой под фундаментной подошвой от 20-25 т/кв.м. В случае если возводимые дома имеют сложную форму или большую длину применяются специальные деформационные швы, которые позволяют разрезать плиту на куски требуемого размера.

Плитный фундамент отличается высокой надежностью и прочностью. Устанавливаемая в грунте плита работает как единое целое, при эксплуатации ее несущая способность остается постоянной, а в случае проседания грунта исключено возникновение каких-либо трещин. Плитный фундамент отличается высокой стоимостью, которая обусловлена повышенным расходом материалов и трудоемкостью процесса обустройства.


Ленточный фундамент


Свайный фундамент


Столбчатый фундамент


Стаканный фундамент


Плитный фундамент

Материал фундаментов

Для фундаментов могут использоваться естественные и искусственные материалы. К первым относят дерево и бутовый камень, к последним – кирпич, бутобетон, бетон, железобетон. Сегодня чаще всего применяют железобетонные и бетонные виды фундаментов при строительстве жилых, промышленных и общественных зданий.

Глубина заложения

В каждом конкретном случае глубину заложения следует рассчитывать с учетом глубины промерзания почвы, ее типа, уровня грунтовых вод, а также нагрузки от здания. Выделяют заглубленные и мелкозаглубленные фундаменты. Фундаменты глубокого заложения имеют глубину больше глубины промерзания грунта.

Также фундаменты подразделяются по способу устройства (сборные и монолитные), характеру работы (жесткие и гибкие) и форме (к примеру, с поперечным сечением в виде трапеции или прямоугольника).

Порядок работ по проектированию

При работах по проектированию на первом этапе составляется оценка грунта. При этом важно узнать, на какой глубине и с какой концентрацией залегают почвенные воды. На деформацию грунта могут оказывать влияние следующие геологические изменения:

При смене сезонов грунт может подвергаться трансформации. На первом этапе изучения характеристик площадки необходимо узнать химический состав почвы. Далее изучается проект здания. Проектирование фундамента связано с формой и типом постройки. Вы должны узнать планировку, размеры здания и количество этажей, сюда относятся и подземные.

На выбор типа мелкозаглубленного фундамента будет влиять форма эксплуатации и устойчивость конструкции. Проектирование фундаментов мелкого заложения предполагает расчет нагрузок. При этом во внимание принимаются коэффициент и уровень нагрузки на основание, которые рассчитываются отдельно по каждому элементу конструкции. Эти данные суммируются в общий показатель.

Важно определить черновые габариты фундамента. Рассчитываются и промежуточные размеры, а также технические характеристики. Данные для этого необходимо взять, ссылаясь на геологию грунта, назначение постройки и метод будущего строительства.

Следующим этапом станет оптимизация размера фундамента по усадке. На этой стадии необходимо осуществить вычисления для параметров и габаритов постройки, взяв в расчет действительные нагрузки. Теперь можно узнать степень осадки фундамента мелкого заложения. Полученные данные сопоставляются с нормами возможной деформации конструкции.

Классификация

Существует четыре типа МЗФ. Каждый из них подходит для определенных условий, обладает своими уникальными особенностями.

Ленточный

Первый вид — ленточный. МЗФЛ считается самым популярным. Область применения — от легких каркасных сооружений до тяжелых каменных домов. Обустройство фундамента на всех типах почв допустимо только в том случае, если предполагается создание дренажной и теплоизоляционной системы.

Внешний вид ленточного фундамента напоминает непрерывную бетонную полосу с внутренним армированным каркасом. Такие конструктивные особенности помогают ему равномерно распределить вес будущего строения, передавая его подошве.

Такое основание разделяется еще на несколько видов:

  • монолитная заливка с поясами из арматуры;
  • сборно-монолитная с армированием по всей длине;
  • блочная со сплошным двойным армированием.

Ленточный МЗФ имеет несколько преимуществ:

  • сокращение расходов на материалах — на 40-50 %;
  • низкая стоимость работ — нет необходимости рыть глубокий котлован, возводить высокую опалубку, привлекать опытных строителей.

Важно помнить, что при создании подвального помещения необходимо доводить глубину закладки фундамента до размеров этого строения.

Столбчатый

Второй вид — столбчатый. Его внешний вид напоминает вкопанные колонны по всему периметру будущих стен. Опоры располагаются по углам, пересечениям и в местах повышенной нагрузки.

Между опорами устанавливается неглубокий ростверк, который соединяет их между собой и позволяет равномерно распределить нагрузку.

Этот вид МЗФ применяется на сильнопучинистых почвах, но которые включают в себя большое количество торфа, супеси или глины. Главные преимущества — низкая цена и быстрота монтажа. Поэтому он очень часто используется в возведении частных домов и хозяйственных построек.

Цельная плита

Третий вид — цельная плита. Представляет собой заливку армированной бетонной плиты по всей площади сооружения. Толщина составляет до 30 см. Особенности данного МЗФ мало чем отличаются от ленточного.

Однако различие заключается в способности равномерно распределять нагрузку по всей площади основания. Иначе говоря, сооружение «плавает» на грунте, как на понтоне.

Основное преимущество — снижение затрат на бетоне до 30%. При этом расходы сокращаются и на подготовке котлована, опалубки более чем на половину, если сравнить со схемой обустройства аналогичных заглубленных вариантов.

Цельномонолитный

Четвертый вид — цельномонолитный. Он объединяет все части силового каркаса в единую армированную конструкцию. По внешнему виду ничем не отличается от цельной плиты, но обеспечивает возможность обустройства цокольного этажа.

При этом достигается равномерное распределение нагрузки здания по всей площади подошвы. Но такой МЗФ нельзя применять для строительства на участках с большими наклонами и с наличием скального грунта.

Такое основание имеет и некоторые сложности. Цельномонолитный фундамент требует правильного расчета его размеров. Его возведение подразумевает большие материальные, трудовые и временные затраты. Но они оправдываются получением высокопрочного и надежного сооружения.

Источник

Оцените статью
Строительство и ремонт