Фундамент под лебедку расчет

Проекты маневровых устройств (лебедок)

ПРОЕКТЫ МАНЕВРОВЫХ УСТРОЙСТВ (ЛЕБЁДОК)

МАНЁВРЫ

Маневровая работа — важная составная часть всего перевозочного процесса. Большая часть средств, затрачиваемых на перевозки, расходуется на выполнение маневровой работы. Маневрами называются все передвижения подвижного состава, групп или отдельных вагонов по станционным путям для выполнения различных видов обработки поездов и вагонов, обеспечиние погрузки, выгрузки и др. операций. Рациональная организация маневров во многом определяет успешную работу транспортного комплекса промышленного предприятия, уровень его перерабатывающей способности и выполнение основного качественного показателя — затраты времени на обработку вагонов.

На путях промпредприятий манёвры совершают как с помощью тепловозов различных марок, так и при помощи электрических лебёдок, которые вместе с устройствами изменения направления движения и управления называют маневровыми устройствами (МУ).

Маневровые устройства применяют для передвижения вагонов вдоль выгрузочных фронтов, взамен локомотивов, применение которых нецелесообразно при ограниченных грузооборотах. Применение МУ позволяет существенно (до 40%) снизить издержки по эксплуатации подъездных железнодорожных путей. Маневровые устройства значительно экономичнее локомотивов, как в первоначальной стоимости, так и в последующем обслуживании и эксплуатации. А использование совершенных образцов МУ позволяет полностью автоматизировать процесс погрузки — выгрузки с единого поста.

МУ обеспечивает манёвры в пределах фронта на погрузучастке инертных материалов. Одновременно обрабатывается группа из десяти вагонов, обеспечивая двустророннее перемещение.

РЕАЛИЗОВАННЫЕ ПРОЕКТЫ

Так это выглядит на бумаге.

Положение лебёдки, отклоняющего и обводных блоков в плане.

Проект фундаметка лебёдки ЛГМ-14.


А так — в железе и бетоне!

Вид лебёдки и отклоняющего блока. Канат не запассован. На погрузочной стенке виден пульт управления, находясь у которого опереатор видит весь грузовой фронт.

Вид на отклоняющий блок и лебёдку со стороны железнодорожного пути.

Источник

Фундамент под тяговую лебедку

Фундамент железобетонный для установки тяговой лебедки -25тс, используемой в качестве тягового механизма при подъеме судна по слипу.

Состав: СБ+Спецификация

Софт: AutoCAD 13

Дата: 2018-03-15

Просмотры: 1 363

2 Добавить в избранное

Еще чертежи и проекты по этой теме:

Софт: AutoCAD 2012

Состав: Загальні відомості, Схема розташування конструкцій, Вузли армування, Специфікація

Софт: ArchiCAD 2021

Состав: Фрагмент фасада, разрез фундамента, сечения

Софт: AutoCAD 2018

Состав: Схема площадки, картограмма перемещения, схема движения экскаватора, продольный разрез площадки, схема бокового забоя, график производства работ, техника безопасности

Софт: SolidWorks 2018

Состав: 3д Сборка, КТПГС, Фундамент, Блоки, ФБС

Софт: AutoCAD 2019

Состав: Пояснительная записка 60 листов, чертеж А1- Геологический разрез, план фундаментов, чертежи к расчету осадок

Дата: 2018-03-15

Просмотры: 1 363

2 Добавить в избранное

Источник

Крепление, монтаж и установка лебедки

Используются два основных вида крепление лебедки электрической: к раме или другим конструкциям здания либо к фундаменту. Помимо этих двух способов возможны и другие способы закрепления, такие как использование балласта, применение якоря.

Крепление к конструкции должно быть осуществлено так чтобы лебедка была установлена прочно и устойчиво. Во избежание деформаций строения требуется произвести расчет сил, которые будут действовать на конструкцию, особое внимание стоит обратить на сварные швы и толщину метала. Расчет должен быть произведен в соответствии с тяговым усилием и учетом технических характеристик самой лебедки.

Принцип крепление к фундаменту заключается в следующем, при заливки фундамента в бетон устанавливаются анкерные болты, и установка лебедки производится посредством крепления ее рамы на данные болты. Данный способ является наиболее предпочтительным, поскольку позволяет выполнить установку лебедки фактически в любом удобном для вас месте. При данном креплении лебедка будет прочно установлена и закреплена. Так же при невозможности заливки фундамента возможен вариант, при котором крепление происходит на бетонные сваи. При креплении на сваях необходимо произвести расчет размеров и глубины забивание свай в соответствии с техническими характеристиками устанавливаемого оборудования.

Монтаж лебедки с использованием якоря связаны некоторые трудности. Горизонтальный якорь может представлять собой одно или несколько бревен, которые горизонтально, поперек оси лебедки зарыты в землю. К середине бревна закрепляют стальной канат либо тягу, концы которого под определенным углом выводят на поверхность земли. На поверхности они стыкуются, образуя петлю. К петле якоря при помощи винтовых стяжек прикрепляют раме лебедки. Данное крепление не рассчитано на перемещение большой массы груза, поэтому такое крепление применяют в основном для такелажных работ.

Иногда для закрепления лебедки в рабочем положении применяется балласт. При использовании балласта необходимо тщательно рассчитывать массу груза, которая будет перемещаться, поскольку при данном закреплении возможно опрокидывание оборудования.

При работе с лебедками необходимо соблюдать требуемые правила по технике безопасности при работе с лебедкой. Поэтому к работе с лебедкой могут быть допущены операторы, хорошо знающие управление и устройство лебедки.

Во время эксплуатации лебедки необходимо помнить о правилах безопасности:

— категорически запрещено переступать трос во время работы механизма;

— при работе с лебедкой требуется использовать брезентовые рукавицы или перчатки с утолщениями на концах пальцев перчаток, но ни в коем случае не обычные перчатки. Использование рукавиц предпочтительно, поскольку в механизмы лебедки может засосать только рукавицу, а в случае с перчаткой возможно попадание руки;

— при сильном натяжении трос может лопнуть, это приведет к нанесению тяжелых травм окружающим рабочим. Чтобы такого не случилось, под середину натянутого троса желательно положить какой-либо тяжелый предмет, это погасить разлет хлыста при обрыве;

— рекомендуется использовать оборудование, которое продаются в комплекте с лебедкой. К примеру, блоки или полиспасты. Они дают двойной выигрыш в тяговом усилии, что может оказаться очень полезным;

— если лебедка эксплуатируется при тяжелых условиях, настоятельно рекомендуется герметизировать двигатель, дополнительно смазать редуктор, передачи, оси роликов, протянуть крепеж и проводки. Кроме этого необходимо сервисное обслуживание — разборка и смазка.

Источник

Пример расчета фундамента под оборудование

Рисунок 9 – Площадь подошвы фундамента

Данные для расчета.

Вес аппарата, кН Gм = 14,7;
Расстояние между осями фундаментных болтов, мм А = 1880 В = 1300;
Высота наземной части фундамента, мм Н1 = 100;
Глубина заложения фундамента, мм Н2 = 500
Нормативное давление на грунт, кПа Rн = 200;
Коэффициент уменьшения* α = 0,5;
Удельный вес бетона, кН/м 3 γ = 20.

*Учитывают степень динамичности машин с помощью коэффициента «α», изменяющегося от 0,3 до 1. Чем выше степень динамичности, тем меньше значение коэффициента «α» (приложение В).

1. Фундамент не должен давать значительной осадки, что достигается, если фактическое давление на грунт Р, кПа, основания системы «аппарат + фундамент» будет меньше нормативного

Р = (Gм + Gф)/(α F) ≤ Rн , (45)

где Gм – вес фундамента:

Gм = V γ (46)

V – объем фундамента, м 3

V = F∙Н, (47)

Н – общая высота фундамента, м

Н = Н1 + Н2 (48)

Н = 100 + 500 = 600 мм = 0,6 м

F – площадь фундамента, м 2

F = (А + 2∆) (В + 2∆) (49)

∆ — припуск на каждую сторону, ∆ = 0,1 м

F = (1880 + 2∙0,1)(1300 + 2∙0,1) = 6,36 м 2

V = 6,36∙0,6 = 3,8м 3

Р = (14,7 + 76)/0,5∙6,36 = 28,5 кН

2. Определяем возможное отклонение оси аппарата от оси фундамента – эксцентриситеты е и е1, которые не должны превышать 5% от соответствующей стороны фундамента

Из пропорций находим предельные эксцентриситеты е и е1, мм

е = 2080∙5/100 = 104мм

е1 = 1500∙5/100 = 75 мм

Расчет приспособлений для монтажа оборудования.

Расчет строп.

Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами, якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.

Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы, выполняемые в виде замкнутой петли, путем последовательной параллельной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все ветви, сокращение расхода каната, меньшая трудоемкость строповки. Технические данные рекомендуемых типов канатов приведены в приложении Г (таблица 1).

Канатные стропы рассчитываются в следующем порядке (рисунок 10).

1. Определяем натяжение в одной ветви стропа, кН:

(50)

где P – расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН;

m – общее количество ветвей стропа;

— угол между направлением действия расчетного усилия и ветвью стропа, которым задаемся исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45⁰, имея ввиду, что с его увеличением усилие в ветви стропа резко возрастает).

2. Находим разрывное усилие в ветви стропа, кН:

(51)

где kз коэффициент запаса прочности для стропа, в зависимости от типа стропа (приложении Г(таблица 2)).

3. По расчетному разрывному усилию, пользуясь таблицей 1.приложения Г, подбираем наиболее гибкий стальной канат и определяем его технические данные: тип и конструкцию, временное сопротивление разрыву, разрывное усилие и диаметр.

Рисунок 10. Расчетная схема.

Рассчитать стальной канат для стропа, применяемого при подъеме при подъеме горизонтального цилиндрического теплообменного аппарата массой Go=15000кг.

1. Определить натяжение одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их =45⁰ к направлению действия расчетного усилия P.

2. Находим разрывное усилие в ветви стропа.

3. По найденному разрывному усилию, пользуясь приложением Г (таблица 1), подбираем канат типа ЛК-РО конструкции 6х36(1+7+7/7+14) о.с. (ГОСТ7668-80) с характеристика:

временное сопротивление разрыву, МПа…………………..1960

масса 1000м каната, кг………………………………………. 2130

Расчет траверс.

В практике монтажа оборудования применяются траверсы двух видов – работающие на изгиб и на сжатие. Первые конструктивно более тяжелые, но обладают значительно меньшими высотными габаритами, что имеет существенное значение при подъеме оборудования в помещениях с ограниченной высотой, а также при недостаточных высотах подъема крюка грузоподъемного механизма.

Расчет траверс, работающих на изгиб.

1. Подсчитываем нагрузку, действующую на траверсу, кН

, (52)

где GO – масса поднимаемого груза, кг,

2. Определяем изгибающий момент в траверсе,

(53)

где а – длина плеча траверсы, см.

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы, см 3 .

(54)

где m и R выбирают по приложению Г (таблицы 3 и 4).

Рисунок 11. Расчетная схема траверсы, работающей на изгиб.

4. Выбираем для траверсы сплошного сечения одиночный швеллер, двутавр или сплошную трубу, и по приложению Г (таблицы 5, 6, 7) определяем момент сопротивления WX, ближайший больший к WТР. В случае невозможности изготовления траверсы большого сечения при больших значениях WТР балки траверсы изготавливаются либо сквозного сечения из парных швеллеров или двутавров, а также из труб, усиленных элементами жесткости, либо, наконец, решетчатой конструкции.

Подобрать и рассчитать сечение балки траверсы, работающей на изгиб, для подъема ротора турбины массой GO =24тонны с расстоянием между стальными подвесками l = 4м (рисунок 11).

1. Подсчитываем нагрузку, действующую на траверсу:

2. Определяем изгибающий момент в траверсе:

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы:

4. Выбираем по табличным данным конструкцию балки траверсы сквозного сечения, состоящую из двух двутавров, соединенных стальными мостиками на сварке.

5. Подбираем по таблице ГОСТ (приложение Г таблица 5) два двутавра №40 с =953 см 3 , определяем момент сопротивления сечения траверсы в целом:

> WТР=1624 см 3

что удовлетворяет условию прочности расчетного сечения траверсы.

Дата добавления: 2018-05-12 ; просмотров: 10268 ; Мы поможем в написании вашей работы!

Источник

Читайте также:  Как пристроить ленточный фундамент
Оцените статью
Строительство и ремонт