Фундамент глубокого заложения типы

ВИДЫ ФУНДАМЕНТОВ ГЛУБОКОГО ЗАЛОЖЕНИЯ.

Необходимость в фундаментах глубокого заложения возникает, если сооружение должно быть опущено на большую глубину (подземные и заглубленные сооружения); если сооружение создает большие нагрузки, а верхние слои представлены значительной толщей слабых грунтов, подстилаемых прочными скальными грунтами; если сооружение передает на основание значительные горизонтальные нагрузки; если имеется высокое залегание грунтовых вод.

Основные виды фундаментов глубокого заложения:

Опускные колодцы

Кессоны

Тонкостенные оболочки

Буровые опоры

1. Опускной колодец представляет замкнутую в грунте обычно симметричную открытую и снизу, и сверху конструкцию. Он либо бетонируется на месте, либо собирается из готовых элементов (рис.Ф.16.1).

Рис.Ф.16.2. Опускной колодец: а — установка на поверхность; б — заглубление; в — наращивание новой секции; г — опускной колодец опущен до прочного грунта; д — у опускного колодца сделано дно

Опускные колодцы погружаются под действием собственного веса, хотя для погружения сборных элементов дополнительно может применяться вибрация. По мере погружения изнутри из колодца извлекается грунт. Для этого могут применяться экскаваторы грейферного или другого типов, иногда гидроразмыв грунта. После опускания колодца до заданной отметки его внутренняя полость частично или полностью заполняется бетоном. Опускной колодец может быть использован для устройства заглубленных в грунт помещений.

Читайте также:  Какая арматура лучше для фундамента а3 или а500с

Материалами являются камень, кирпич (кладка), дерево, металл, бетон и железобетон. Чаще всего применяется бетон и особенно железобетон.

В плане опускные колодцы имеют симметричную форму, могут быть круглыми, квадратными, прямоугольными с внутренними перегородками или без них (рис.Ф.16.4). Наиболее рациональной является круглая форма. Острые углы в плане округляются. Симметрия определяется тем, что при этом уменьшается вероятность перекосов опускных колодцев при их погружении.

Рис.Ф.16.4. Различные формы поперечного сечения опускных колодцев

Опускные колодцы в плане часто повторяют контур сооружения, например мостовой опоры, водозаборного устройства и т.д. Для опускного колодца стремятся, чтобы периметр по отношению к его площади был бы наименьшим, чтобы уменьшить силы трения по боковой поверхности, препятствующие его погружению, а площадь опирания  наибольшая. Ею определяются опорные давления на подстилающий слой от внешней нагрузки и возможность использования внутреннего помещения в опускном колодце, нужного для размещения оборудования.

Применение железобетона позволяет по отношению к чисто бетону сделать более тонкими стенки, а также, в случае необходимости, применить для колодца более сложную форму.

Снизу опускные колодцы имеют ножевую режущую часть  в стенке делается скос с внутренней стороны. Ножевая часть усиленно армируется, в нее могут закладываться металлические прокатные профили  уголки или швеллеры. Толщина режущей части понизу составляет 150-400 мм. Наружные стенки колодца либо полностью вертикальные, либо ступенчатые с уменьшением диаметра кверху, либо наклонные. Толщина стен иногда достигает 2-2,5 м. Уступ позволяет снизить трение о грунтовый массив при опускании, а также уменьшить расход материала, так как боковое давление на колодец кверху уменьшается. Наклон образующей боковой поверхности к вертикали делается обычно менее 1 , но он может затруднить вертикальность при опускании колодца, поэтому возможно возникновение перекосов. Ступенчатость также определяется исходя из такого же малого уклона. Бетонирование колодца ведется обычно на месте ярусами по мере его опускания. Глубина опускных колодцев может быть назначена любой из условий практической необходимости, а разработка грунта в них может осуществляться как с водоотливом, так и без водоотлива. Извлечение грунта осуществляется либо сверху грейфером, либо (при осуществлении водопонижения и осушения) путем погружения после осушения механизма внутрь колодца. При разработке грунта внутри колодца может применяться гидромеханизация.

Опускание колодцев производится с поверхности под действием собственного веса. Погружение должно вестись строго вертикально, без перекосов. В случае оседания с одной стороны пригружается другая сторона для выравнивания. Обследуется возможность препятствия для погружения  валунов, стволов погребенных деревьев и др. Водопонижение может облегчить опускание, так как при этом снижается действие противодавления воды. Для облегчения опускания могут применяться местные гидроподмыв и выборка грунта.

При погружении опускных колодцев они могут «зависнуть» из-за большого трения на контакте с грунтом массива, в который они погружаются. Чтобы этого не было, в полость между массивом и боковой поверхностью колодца нагнетается глинистый раствор, образующий так называемую «тиксотропную рубашку». Этот раствор приготовляется из бентонитовых глин, обладающих тиксотропными свойствами, то есть глин, переходящих в желеобразное состояние. Затем, после окончания опускания колодца, боковое пространство заполняется цементно-песчаным раствором.

Расчет ведется на строительные и эксплуатационные нагрузки. Действующие нагрузки: собственный вес колодца; силы трения по боковой поверхности; боковое давление грунта на стенки колодца; давление воды снаружи и изнутри. Стенки колодца рассчитываются на отрыв нижней части при наличии зависания в верхней части, на изгиб. Колодец в целом рассчитывается на возможность опускания при воздействии собственного веса. При устройстве днища в колодце следует произвести проверку возможности его всплытия при повышении уровня воды.

2. Кессоны применяются тогда, когда опускание опоры глубокого заложения должно производиться ниже уровня воды и требуется ручная разработка грунта. Кессон  это опрокинутый вверх дном ящик, образующий камеру, в которую нагнетается под давлением воздух таким образом, чтобы выдавить всю воду и осушить разрабатываемый грунт. Этот способ более сложен и дорог, чем применение опускного колодца, но он позволяет «добраться» до разрабатываемого грунта вручную. После окончания опускания кессона его камера заполняется бетоном.

Установка для опускания кессонной опоры состоит из:

1) кессонной камеры;

3) шлюзового аппарата;

4) компрессорных установок для нагнетания воздуха.

Кессонная камера железобетонная, имеет высоту не менее 2,2 м. В нижней части по периметру имеется ножевое устройство, как и у опускного колодца. Шлюзовой аппарат служит для возможности входа человека в ствол-шахту, где давление воздуха выше атмосферного и, затем, по окончании работ, выхода его оттуда, а также извлечения грунта. В шахте устраивается лифт-подъемник. Надкессонное строение возводят либо сразу на всю высоту, либо ярусами с наращиванием по мере необходимости.

Рис.Ф.16.12. Кессон: а — для использования подземного пространства (размещения в нем оборудования); б — для использования как опоры сооружения; 1 — кессонная камера; 2 — надкессонное строение; 3 — шахтная труба; 4 — шлюзовой аппарат; 5 — гидроизоляция; 6 — защитная стенка

После монтажа и опробования установки по нагнетанию воздуха начинается опускание кессона, для чего из-под ножа камеры вынимаются подкладки. Сжатый воздух в камеру начинает подаваться после достижения ножевой частью камеры уровня воды. Давление регулируется таким образом, чтобы «выдавить» воду из камеры. Максимальная глубина опускания кессона не более 40 м ниже уровня подземной воды, так как большее избыточное давление (более 40 кПа) человек обычно не выдерживает. Адаптация человека к повышенному давлению занимает до 15 мин, а обратный процесс продолжается до 1 часа.

Если кессон опускается, то для форсирования опускания временно понижается внутреннее давление в камере, а вокруг ножевой части внутри применяется глиняная обкладка, препятствующая притоку воды внутрь камеры. Для разработки грунта внутри камеры применяется гидромеханизация. Отработанный грунт удаляется гидроэлеваторами или бадьями с использованием лифта. Кессоны сейчас используются значительно реже, чем опускные колодцы или другие виды фундаментов глубокого заложения.

3.Фундаменты глубокого заложения могут быть выполнены в виде тонкостенных оболочек. Это пустотелые железобетонные цилиндры диаметром 1-3 м. Толщина стенки  12 см. Секция имеет длину 6-12 м. По мере необходимости секции наращиваются. Соединения в стыках осуществляются путем сварки или на болтах. Для погружения в песчаные грунты применяется вибрация. В нижней части опоры делается ножевое устройство. После погружения внутренняя полость заполняется бетоном. Имеются варианты толстостенных оболочек (до 20 см) и с поперечной диафрагмой. Диафрагма имеет отверстие для извлечения грунта. Оболочка погружается до скальных пород, а нижний ее конец заделывается в скалу. В нижней части для заделки в скалу может быть сделано уширение. Его полость бетонируется, но предварительно в эту зону погружается арматура.

4.Буровые опоры  это бетонные столбы, устраиваемые в пробуренных скважинах, то есть набивные сваи большого диаметра. Бетонирование ведется под защитой либо обсадных труб, либо глинистого раствора, удерживающего стенки скважин от обвала. Они работают как сваи-стойки, поскольку их доводят до плотных грунтов, на которые они опираются. В нижней части для уменьшения давления на грунты делается уширение. Тело опор армируется. Несущая способность до 10 МН и более. Диаметр 0,4-1,2 м. Глубина погружения до 30 м и более.

5.Способ предназначен для устройства фундаментов, а главное, заглубленных в грунт сооружений. По контуру сооружения отрывается узкая глубокая траншея, которая заполняется бетонной смесью или сборными железобетонными элементами. Стена в грунте применяется для устройства фундаментов тяжелых зданий, подземных этажей, гаражей, переходов, водопроводно-канализационных сооружений, противофильтрационных сооружений и др.

Эти конструкции особенно эффективны в грунтах с высоким стоянием уровня грунтовых вод, а также при возведении в условиях плотной городской застройки. Стена в грунте отделяет массив, находящийся непосредственно под зданием или сооружением, от окружающего пространства, что позволяет увеличить несущую способность основания и уменьшить осадки, более эффективно использовать подземное городское пространство. Эти конструкции справедливо получили свое развитие в последнее время.

Можно подразделить на следующие этапы устройство стены в грунте. По контуру сооружения отрывается форшахта для землеройных машин, ширина которой немного больше ширины траншеи, глубина до 0,8 м; при высоком стоянии грунтовых вод для установки машин делается песчаная подсыпка; откапывается на полную глубину узкая траншея для сооружения секций стены захватками до 30-50 м каждая; по ее торцам устанавливаются ограничители, после чего в траншею закладывается арматура и она заполняется бетоном. Возможно также изготовление стены в грунте из сборных элементов. Для того, чтобы стенки траншеи не обваливались, в особенности при высоком стоянии грунтовой воды, ее заполняют глинистым раствором из бентонитовой глины, уровень которого должен быть выше уровня грунтовой воды.

Выемка грунта осуществляется грейфером двухчелюстного типа или многоковшовым экскаватором типа фрезы. Такими механизмами отрываются траншеи глубиной до 8 м. Зазоры между сборными элементами заполняются цементным раствором для придания стене монолитности. После возведения стены в грунте и твердения бетона из внутреннего замкнутого пространства удаляется грунт.

Рис.Ф.16.17. Стена в грунте: а — выемка грунта из скважины; б — заполнение бетоном; в — разработка новой скважины между двумя забетонированными; г — порядок бурения скважины для устройства сплошной стены

Если заделки в основании для устойчивости и обеспечения прочности стены оказывается недостаточно, то предусматриваются распорные или анкерные крепления. Распорные крепления применяются, если расстояние между параллельными стенами менее 15 м. Анкерные крепления предпочтительнее, причем инъекционного типа в одном или, при необходимости, в двух уровнях.

Источник

Фундамент глубокого заложения

Если фундамент закладен на глубину до 5-6 м и отношение этой глубины к ширине подошвы не превышает 1,5-2, то его называют фундаментом мелкого заложения и возводят в котлованах.

Если подошва фундамента расположена на глубине больше 5-6 м м и отношение этой глубины к ширине подошвы больше 1,5-2, то такой фундамент будет глубокого заложения.

Фундаменты глубокого закладывания подразделяются на свайные, опускные колодцы, кессоны. Они имеют разные специфические способы производства работ и соответственно особые конструкции.

Кроме этого фундаменты глубокого заложения и мелкого заложения отличаются:

— способом производства работ;

— расчетами: при расчетах фундамента мелкого заложения учитывается работа (сопротивление) грунта только на подошве фундамента, фундаментов глубокого заложения – учитывается еще и сопротивление грунта по боковой поверхности фундамента, то есть фундамент рассчитывается с учетом его заделки (защемления) в грунте.

Основания подразделяются на:

естественные и искусственные;

скальные и нескальные.

Скальные основания представляют собой массивные каменные горные породы, изверженные, метаморфические и осадочные, которые спаяны и сцементированы жесткой связью между зернами, и которые залегают в виде сплошного массива или трещиноватой толщи и характеризующиеся значительными пределами прочности при сжатии (больше 50 кгс/см2).

Деформации скальных оснований при действии нагрузки от сооружений небольшие и их часто не учитывают.

При выборе отметки заложения оснований сооружения важным является глубина заложения скальных пород, их трещиноватость, обломочность, мощность, зоны выветривания.

Это самые надежные и несжимаемые основания.

Нескальные основания представляют толщу рыхлых горных пород –грунтов несвязных или связных, но прочность их внутренних связей во много раз меньше прочности материала самих минеральных часттиц. Это отложения крупнообломочных, песчаных, глинистых и илистых грунтов. Эти основания требуют к себе наибольшего внимания при возведении сооружений, так как им свойственна значительно большая деформируемость и неоднородность по сравнению со строительными материалами, из которых возводятся сооружения(бетон, железобетон, и тому подобное).

Если фундамент возводится на грунте с сохранением его природных качеств, то есть на грунте ненарушенной структуры, то такое основание называется естественным.

Если грунт перед возведением фундамента укрепляют тем или иным способом , то такое основание называется искусственным.

2. Глубина заложения фундаментов. Нормативные положения. Выбор рационального фундамента.

Выбор глубины заложения подошвы фундамента является одним из основных этапов проектирования. Выбор глубины заложения фундаментов выполняется по «Снип2.02.01-83. «Основания зданий и сооружений».

Выбрать глубину заложения– это значит найти в напластовании грунтов несущей площадки несущий слой, способный выдержать давление от сооружения и правильно заложить в нем подушку фундамента.

От принятой глубины заложения зависит тип фундамента, его конструкция и способ производства работ.

Чем выше заложена подошва, тем экономический фундамент (меньшая стоимость работ на его устройству).

Так как верхние слои грунта не обладают достаточной несущей способностью, необходимо заглубление подошвы фундамента. Для одних и тех же грунтовых условий можно избрать несколько вариантов глубины заложения и типов фундаментов. Выбирается наиболее экономичный фундамент путем сравнения технико-экономических показателей.

Решая вопрос о выборе глубины закложения фундамента, типа фундамента, учитывают три основных фактора:

1) инженерно-геологические условия площадки строительства;

2) климатические воздействия на верхние слои грунта;

3) особенности сооружений как возводимых, так и расположенных

Инженерно-геологические условия площадки строительства

Выбор глубины заложения и типа фундамента начинается с оценки грунтовых условий (несущей способности грунтов) на основе материалов инженерно-геологических исследований, то есть изысканий, в которых должны быть отражены:

— геологическое строение места строительства сооружения (грунтовые колонки, геологические разрезы, геологические характеристики грунтов);

— сведения об инженерно-геологических процессах в районе строительства (оползни, карстовые явления, и тому подобное);

— физические и механические характеристики грунтов, полученные в результате полевых и лабораторных испытаниях;

— гидрологические условия (сведения о подземных грунтовых водах, их режимах, агрессивности по отношению к материалу фундамента, сведения о режимах рек).

Оценку несущей способности грунтов выполняют послойно сверху вниз по геологическим разрезам и грунтовым колонкам.

Каждая площадка строительства имеет свои специфические особенности. Напластование грунтов сугубо индивидуально. Но в большинстве случаев могут быть выделены три характерные схемы грунтовых условий (рис. 2)

1- прочный грунт (надежный);

2- малопрочный грунт (слабый).

Понятие «слабый» и «надежный» грунт – достаточно относительные. Эти понятия связываются с проектуемым сооружением. Если проектируется легкое сооружение, то даже сильно сжимаемые грунты могут быть «надежными». При тяжелых сооружениях, под нагрузкой которых фундаменты получают большие осадки, грунты даже средней сжимаемости, будут считаться «слабыми».

Схема 1: Толщина надежных грунтов может состоять из нескольких слоев, но подстилающие слои должны иметь качества по сжимаемости и сопротивлению грунта сдвигу не ниже верхнего слоя толщи (то есть каждый нижележащий слой прочнее предыдущего).

Глубина заложения зависит от климатических условий и особенностей сооружения. Самое простое решение – принятие минимальной глубины заложения, допускаемой при учете климатических воздействий и особенностей сооружения (рис. 3)

Схема 2: При таком напластовании можно наметить ряд решений (в этом случае «слабые» грунты сверху, внизу «надежные»). Рациональность принятых решений зависит от глубины, на которой залегают «надежные» грунты, и от характера возводимого сооружения (см. рис. 4):

а) самое простое решение – прорезка «слабых» грунтов и передача давления на «надежные» (рис. 4а);

б) если «надежный» грунт залегает на большой глубине, то фундамент свайный или столбчатый (рис. 4б);

в) легкие сооружения можно основать на коротких сваях, передающих нагрузку на «слабый» грунт (мощность «слабого» грунта достаточно большая);

г) слабые грунты могут быть уплотнены или заменены песчаной подушкой.

Схема 3: В этом случае рекомендуются такие решения:

а)самое простое, но всегда самое эффективное решение – прорезка верхнего «надежного» и «слабого» слоев и передача давления на нижний «надежный» грунт (рис. 5);

б) опереть фундамент на верхний «надежный» грунт и проверить при этом величину давления на кровлю слабого слоя (рис. 6);

в) закрепить «слабый» слой грунта, то есть устроить искусственное основание.

К инженерно-геологическим относятся и гидрогеологические условия.

Климатические воздйствия на верхние слои грунта.

Под воздействием промерзания и протаивания, высыхания и увлажнения верхние слои грунта могут изменять свой объем, вызывая неравномерные деформации основания и фундамента. Наиболее опасным является сезонное промерзание грунтов.

Многие грунты при промерзании увеличиваются в объеме (испытают пучение). Это пучиноопасные грунты. К ним относятся глинистые грунты, пылеватые и мелкозернистые пески.

Непучиноопасными является среднезернистые, крупнозернистые и гравелистые пески, гравий, галька, медленно выветривающиеся скальные породы.

При расположении подошвы фундамента в зоне промерзания при пучинистых грунтах на фундамент могут действовать силы пучения, нормальные к его подошве и касательные к боковой поверхности.

В случае превышения нормальными силами пучения величины давления на грунт сооружения, в процессе промерзания грунтов могут возникнуть неравномерные и значительные подъемы фундамента, а при оттаивании – неравномерные осадки. Это приводит к разрушению сооружения.

Следует учитывать, что промораживание грунтов в процессе строительства недопустимо. По «СниП 2.02.01-83» глубина подошвы фундамента

где df – расчетная глубина сезонного промерзания грунта для данной местности;

dfn нормативная глубина сезонного промерзания;

kh – коэффициент влияния тепловодного режима сооружения;

Нормативная глубина сезонного промерзания грунта dfn принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов по данным наблюдений за период не менее 10 лет при определенных условиях (над оголенной от снега поверхности при уровне меженных вод ниже уровня сезонного промерзания).

При отсутствии данных наблюдений определяется расчетом по «СниП 2.02.01-83» п.2.27.

При строительстве на водотоках непременным условием при выборе глубины заложения является учет возможных размывов дна у опоры после строительства моста. Глубина заложения фундамента с учетом размывов принимается за п. 12.5 «СниП 2.02.01-83».

Особенности сооружений возводимых и соседних.

К особенностям сооружений относятся нагрузки, передаваемые на основание, чувствительность конструкций к неравномерным осадкам, планируемая долговечность сооружения и их уникальность. Кроме того наличие подвалов, приямков, характер подземного хозяйства около объекта строительства. Примыкание к фундаментам ранее построенных зданий приводит к необходимости учитывать глубину заложения существующих фундаментов здания, чтобы не нарушать структуру грунта под их подошвами.

Пример учета особенностей сооружения: Для мостов внешне статически неопределимых систем наиболее пдходящими грунтами для оснований яляются малосжимаемые скальные и полускальные грунты. При соответствующем обосновании расчетом пролетних строений могут применяться плотные крупнообломочные грунты, крупнозернистые пески. При других грунтах обычно применяют статически определимые пролетные строения.

3. Предельные состояния оснований. Общие положения расчетов.

Расчет по предельным состояниям впервые был предложен и внедрен советскими учеными Стрелецким Н.С., Гвоздевым А.А. и др., он позволяет получить наиболее экономичные конструктивные решения при разумном запасе несущей способности втечение всего срока службы сооружения.

Предельными называется такие состояния, при которых становится невозможной или вызывает значительные затруднения нормальная эксплуатация сооружения.

Предельные состояния делятся на 2 группы:

І группа – состояния, когда эксплуатация сооружения невозможна из-за исчерпывания его несущей способности (прочность, стойкость);

ІІ группа – состояния затрудняющие нормальную эксплуатацию сооружения (деформированность).

Наиболее опасным являются нарушения состояний І группы, которые ведут к полному или частичному разрушению сооружения.

Предельные состояния І группы проявляются в виде просадок фундамента, вызванных потерей устойчивости грунтоа основыания, а также в виде потери устойчивости положения фундамента и всего сооружения в результате опрокидывания, плоского или глубинного сдвига и т.д. Это катастрофические явления.

Нарушения предельного состояния ІІ группы выражаются в виде осадок фундаментов. Величина осадок значительно меньше просадок.

Просадки – это вертикальные деформации, вызванные коренным изменением структуры грунта.

Осадки – это деформации, вызванные уплотнением грунта без коренного изменения его стуктуры.

Грунтовые основания деформируются под нагрузкой от сооружения всегда. При действии на фундамент только вертикальных центрально приложенных сил, основание сжимается равномерно. Если в нагрузках есть горизонтальные силы и момент, то деформации неравномерны, возникают крены (наклоны) сооружений.

Крен сооружений небезпечен в мостовых опорах, может привести к нарушению опорных частей пролетных строений, нарушению сопряжения моста с насыпями. При больших кренах опор возможны обрушивания пролетных строений.

Основная расчетная формула по І группе предельных состояний – расчет оснований по несущей способности согласно «СниП 2.02.01-83. Основания зданий и сооружений» п.2.58:

где — расчетная нагрузка на основание (от внешних нагрузок);

Fu – сила предельного сопротивления основания;

γc – коэффициент условий работы, учитывает влияние окружающей среды, приближенность расчетов и т.п.;

γn – коэффициент надежности по назначению сооружения.

Чаще всего проверка прочности грунтов снования выражается формулой:

где R – расчетное сопротивление грунта основания;

, (4)

где Rn – нормативное сопротивление грунта ;

– коэффициент надежности по грунту, учитывающий неоднородность грунтов и их механических характеристик;

А – геометрическая характеристика подошвы фундамента (площадь, момент сопротивления).

При проверки прочности основания давление на грунт не должны превышать расчетного сопротивления грунта R. Величина R назначается как некоторая доля давления, вызывающего предельное состояние. Оно зависит не только от физико-механических свойств грунта, но и от относительного заглублення фундамента ( h– глубина заложения фундамента, b – ширина фундамента) и схемы образования плскостей сдвигов.

Работа грунта под подошвой фундамента хорошо просматривается на песчаных основаниях (рис. 7)

І- фаза уплотнение ІІ- фаза сдвига ІІІ-стадия разрушения — просадка

Рис. 7 – График деформации песчаного грунта под нагрузкой.

Основная особенность грунтов заключается в том, что они не являются сплошными телами, а имеют поры, которые частично, или полностью заполнены водой. Сначала при действии внешней нагрузки происходит только уплотнение (сжатие) грунтов за счет уменьшення пор, то есть осадка происходит только за счет уплотнения грунта и носит линейный характер (Іфаза). С течением времени увеличение осадки прекращается, то есть осадка затухает и ее величина становится постоянной во временем. На графике (рис. 7) – это І фаза — фаза уплотнения.

На втором участке графика, где нагрузка больше, вследствие чего возникает сдвиг частиц относительно друг друга(то есть в основании, особенно в случае горизонтальных сил, появляются касательные напряжения, которые стремятся сдвинуть частицы). Зависимость между осадкой и давлением носит криволинейный характер (ІІ фаза). С течением времени осадка равномерно нарастает. Деформации грунта происходят в основном за счет сдвига частиц – поэтому ІІ фаза – фаза сдвига. В начальный период несущая способность грунта еще не исчерпанна. Но в конце сдвиг грунта получает еще большее развитие и вызывает нарастание осадки без увеличения нагрузки, в результате чего происходит разрушение грунта и выпор его из-под фундамента (ІІІ фаза). Осадка нарастает мгновенно и неограниченно.

Фаза ІІ – фаза сдвига заканчивается образованием непрерывных поверхностей скольжения под подошвой фундамента, грунт теряет прочность, становится подвижным, образуется уплотненное грунтовое ядро. Просадки носят катастрофический характер.

Как указывалось выше схема разрушения и величина R – несущая способность основания зависят и от относительной глубины заложения фундамента h/b. На рис. 8 даны схемы потери стойкости песчаного основания от h/b.

h/b≤0,5 1 – грунтовое плотнящее ядро;

2 – поверхности сдвига

Рис.8 – Схеме потери стойкости песчаного основания

В этом случае потеря стойкости происходит за счет сдвига (выпора) примыкающого к фундаменту грунта по наклонным под углом к горизонтали приблизительно 45 º — φ/2 поверхностям скольжения.

б) 1,5 3…4 сдвиг возможен за счет уплотнения грунта, расположенного ниже подошвы фундамента. Четко выраженных поверхностей скольжения не образуются, осадки фундамента возрастают плавно. При таких глубинах заложения практически не вызываются нарушения устойчивости и первое предельное состояние, как правило, не достигается. Поэтому в расчетах R присутствуют величины h и b.

Расчетное сопротивление основания (грунтов) принимается по приложению 24 «СНиП 2.05.03-84. Мосты и трубы».

где Ro – условное сопротивление грунта;

d – глубина заложения фундамента (d=h);

b – ширина фундамента.

Общая формула расчета по ІІ группе предельных состояний по п. 2.38 «СНиП 2.02.01-83. Основания зданий и сооружений»:

где S –совместная деформация основания и сооружения, определяется по указаниям норм (осадка, крен, горизонтальные перемещения, разность осадок соседних фундаментов и тому подобное), является функцией нагрузок, размеров фундамента и характеристик грунтов;

Su – предельное значение совместной деформации основания и сооружения, устанавливается нормами для данного сооружения («СНиП 2.02.01-83. Основания зданий и сооружений и СНиП2.05.03-84. Мосты и трубы»).

Расчеты прочности следует вести на наиболее неблагоприятные сочетания нагрузок с учетом соответствующих коэффициентов надежности по нагрузке, то есть на расчетные нагрузки.

Расчеты деформации ведут на нормативные нагрузки.

Тема : ФУНДАМЕНТЫ МЕЛКОГО ЗАЛОЖЕНИЯ НА ЕСТЕСТВЕННОМ ОСНОВАНИИ.

1. Общие сведения.

2. Виды и конструкции фундаментов мелкого заложения.

1.1 Массивные жесткие фундаменты.

1.2 Ленточные фундаменты.

1.3 Отдельные фундаменты под стойки («башмаки»).

1.4 Фундаменты в виде сплошной железобетонной плиты.

2. Материалы для фундаментов.

1. Общие сведения.

Фундаменты мелкого заложения – это фундаменты, глубина заложения которых не превышает 4 — 6 м.

Фундаменты мелкого заложения возводят в котлованах, открытых с поверхности грунта на полную глубину, до подошвы фундамента.

При малых глубинах заложения подобный метод является чаще всего самым выгодным.

Отличительной особенностью фундаментов мелкого заложения является то, что при расчете их перемещений и определении напряжений в основании не учитывается сопротивление грунта по боковой поверхности фундамента, поэтому фундаменты мелкого заложения передают давление только через подошву. Такой работе фундамента соответствует его ступенчатая конструкция.

2. Виды и конструкции фундаментов мелкого заложения.

Различают следующие основные виды фундаментов мелкого заложения по их конструкции:

1) массивные жесткие фундаменты;

2) ленточные фундаменты под стены зданий или ряды колонн;

3) отдельные фундаменты под стойки и колонны сооружений («башмаки»);

4) фундаменты в виде сплошной железобетонной плиты под всем сооружением.

2.1 Массивные жесткие фундаменты.

Такие фундаменты сооружают под массивные сооружения (например, массивные мостовые опоры «быки»). Выполняют из бетона или бутобетона (80% бетона и 20% бута).

Фундаменты жесткие, невоспринимающие растягивающие усилия и потому имеют ступенчатую форму.

При расчетах жесткостью таких фундаментов пренебрегают, то есть их считают бесконечно жесткими, сами они не деформируются.

Схема массивного фундамента под мостовую опору показана на рис. 1.

Рисунок 1 – схема массивного фундамента

В жестких массивных фундаментах линия образования уступа с вертикалью должна иметь угол α, не превышающий предельного угла распределения давления в кладке от вертикальных нагрузок (αпред),

α ≤ αпред =30 º , тогда

при этом в фундаменте не возникают растягивающие усилия.

aу=0,5 – 1,0м; hу=1,0 — 2,0м;

2.2 Ленточные фундаменты.

Такие фундаменты устраивают под стенки зданий из сборных бетонных и железобетонных блоков, редко из бутовой кладки. Ленточные фундаменты под ряды колонн устраивают при стоечных опорах путепроводов, имеющих конструкцию чувствительную к неравномерным осадкам основания. Такие фундаменты устраивают также в случае малого расстояния между стойками когда выполнение отдельных фундаментов становиться не рациональным, а также при сильно сжимаемых грантах.Схема ленточного фундамента показанна на рис.2.

Рисунок 2 – Схема ленточного фундамента под стоечную опору путепровода.

Ленточные фундаменты под стойки и колонны чаще всего делают железобетонными. Под внутренние колонны фундаменты выполняют в виде перекрестных лент. Ленточные фундаменты под стены жилых, общественных и промышленных зданий делают из сборных бетонных блоков – стен и железобетонных блоков – подушек. Блоки заводского изготовления. Фундаментные блоки-подушки укладываются плотно друг к другу или с промежутками, образуют прерывистый фундамент. Применение прерывистых фундаментов возможно при прочных малосжимаемых грунтах и приводит к уменьшению стоимости строительства и типизирует конструкцию.

Отдельные фундаменты под стойки («башмаки»)

Отдельные фундаменты под стойки путепроводов, рамных мостов, виадуков и колонны промышленных зданий устраивают при хороших грунтах (малосжимаемых, прочных грунтах). Это так называемые «башмаки». Их выполняют из железобетона. По характеру работы материала «башмаки» относятся к гибким фундаментам. Схема «башмака» показана на рис. 3.

Рисунок 3 – Схема «башмака».

В «башмаках» возникают значительные растягивающие усилия, воспринимаемые арматурой. При одной и той же площади подошвы фундамента объем фундаментов «башмаков» гораздо меньше.

Фундамент в виде сплошной железобетонной плиты

Устраивают такие фундаменты под всем сооружением. Применяют при сильносжимаемых и малопрочных грунтах основания. Схема фундамента показана на рис. 4.

На общую плиту передается нагрузка от всех стен и колонн здания. При этом уменьшается средняя осадка всего сооружения, неравномерность осадок отдельных стен и колонн практически исключается.

Рисунок 4 – Схема фундамента в виде сплошной железобетонной плиты.

Эти фундаменты редки, неэкономичны. Очень чувствительные к неравномерным осадкам.

Материалы для фундаментов

Материалы в фундаментах подлежат деформациям под действием различных внешних усилий, влияния грунтовой и поверхностной воды, воздействию замерзания и оттаивания влаги в порах кладки.

Для обеспечения долговечности фундаментов выбирают материалы, хорошо сопротивляющиеся этим воздействиям: железобетон, бетон, бутобетон, редко бутовая кладка (из-за трудоемкости выполнения).

Наиболее универсальным материалом для фундаментов любой формы является железобетон, так как железобетон хорошо сопротивляется не только сжатию, но и изгибу.

Железобетонные и бетонные фундаменты выполняются сборными и монолитными.

Монолитными называют фундаменты, которые бетонируют непосредственно на месте возведення сооружения.

Сборные элементы наиболее рациональны для устройства ленточных фундаментов под стены.

В дорожном строительстве сборные фундаменты в виде «башмаков» применяют под опоры (стойки) путепроводов, рамных и балочных мостов малых пролетов при грунтах, которые имеют достаточно высокую прочность и малую сжимаемость.

В случае более слабых грунтов возможно использование сборно-монолитных фундаментов, в которых нижняя плита, имеющая большой вес, выполняется монолитной, а подколоники сборными.

Применение сборных фундаментов заводского изготовления позволяет уменьшить трудоемкость работ на строительных площадках и максимально механизировать работы. Сборные фундаменты позволяют повысить качество работ, применять более совершенные конструкции фундаментов, обладающие меньшим весом и высоким процентом использования прочности материалов. Однако, при этом увеличивается расход стали, трудозатраты на заводе, транспортные расходы.

Для массивных опор мостов, которые требуют большой площади для передачи давлению на грунт, в дорожном строительстве находят применение монолитные фундаменты. Монолитные фундаменты целесообразны для отдельных фундаментов сложного очертания под колонны и оборудование, а также когда вес фундамента больше грузоподъемности монтажного крану.

Проверка устойчивости положения фундамента

В ряду случаев при действии на фундамент, кроме вертикальных сил, горизонтальных сил и изгибающих моментов, выполняются проверки:

— устойчивости положения фундамента на опрокидывание;

— устойчивости на плоский или глубинный сдвиг.

Проверки выполняются по п.1.40; 1.41;7.14 «СНиП 2.05.03-84. Мосты и трубы».

Устойчивость положения фундамента против опрокидывания

Расчетная схема показана на рис.3

Рис 3 Расчетная схема

, ( 8 )

где Мu= ∑Fi *hi – момент опрокидывающих сил;

γn — коэффициент надежности по назначению, γn =1,1;

m — коэффициент условий работы;

m= 0,9 — скальное основание,

m= 0,8 — грунтовое основание.

Проверка на плоский сдвиг по подошве фундамента

, (9)

где Qr = ∑ Fi– сдвигающая сила равна сумме проекций сдвигающих сил по направлению возможного сдвига;

Qz = Ψ∑Pi – удержувающие силы – силы трения между грунтом и подошвой;

Ψ– коэффициент силы трения кладки о грунт ( о поверхность), принимается по п. 7.14 «СНиП 2.05.03-84. Мосты и трубы»;

m – коэффициент условий работы; m=0,9;

– коэффициент надежности по назначению, =1,1.

Источник

Оцените статью
Строительство и ремонт