Формулы для расчета гидроизоляции

§ 4.1. Гидроизоляция подвалов зданий и фундаментов (ч. 6)

В пределах зоны вечномерзлых грунтов гидроизоляция проектируется по обычным правилам с учетом пониженной эксплуатационной температуры, а в пределах зоны возможного оттаивания грунтов необходимо рассчитывать стеновые покрытия на сплошность и прочность при воздействии сил трения, возникающих при просадочных деформациях и морозном пучении.

Сплошность гидроизоляционного покрытия на вертикальной поверхности ориентировочно может быть рассчитана по формуле

где γг — объемная масса грунта; φ — угол его внутреннего трения; Hз — глубина засыпки покрытия; δп — толщина покрытия (или его слоя); α — угол наклона поверхности к вертикали; σдоп — допускаемое напряжение в покрытии в зависимости от σдл — длительной прочности.

При учете сил трения вспучиваемого или проседающего грунта по поверхности гидроизоляционного покрытия расчет сплошности можно вести по формуле

где kтр — коэффициент трения грунта по поверхности гидроизоляции; остальные обозначения приведены выше.

Для уменьшения сил трения не рекомендуется устраивать выступы в гидроизоляционных покрытиях на стенах, придавать окрасочным и штукатурным покрытиям большую гладкость и покрывать их цементно-латексной суспензией либо смазывать их поверхность пушсмазкой или петролатумом.

Прочность гидроизоляционного покрытия против разрывов под воздействием деформации прилегающих мерзлых грунтов может быть повышена применением более прочных материалов, например армированных стеклотканями, либо армированием окрасочного или штукатурного покрытия прокладкой из стеклоткани.

В зданиях, сооружаемых на вечномерзлых грунтах, предусматриваются меры по предотвращению их оттаивания; так, здания приподымают над поверхностью грунта, возводя их на свайных ростверках, однако при необходимости устройства заглубленных подвалов с положительной эксплуатационной температурой их нужно не только гидроизолировать, но и теплоизолировать для исключения возможности оттаивания вечномерзлых грунтов (рис. 4.4, а), т.е. устраивать комплексную теплогидроизоляцию (см. § 2.1, а также патент США №3966781 от 19.10.76 г. о теплоизоляции зданий на вечной мерзлоте).

Читайте также:  Как при помощи жидкого стекла сделать гидроизоляцию

В общем случае можно устраивать обычные гидроизоляционные покрытия, а подготовку в основании здания и присыпку на стенах подвала выполнять из теплоизолирующего материала: керамзитового гравия, шлака, причем толщина присыпки (или подготовки) назначается в результате специального теплотехнического расчета, предполагающего отсутствие положительной температуры в основании или присыпке при тепловом потоке из подвала в наиболее неблагоприятный период. Однако это потребовало бы укладки очень толстых теплоизолирующих слоев, причем обычно они постепенно увлажняются вследствие оттаивания вечномерзлых грунтов, а замерзающая в их порах вода лишает их теплоизолирующей способности; поэтому такие прослойки выполняют из гидрофобных порошков или песков, гидрофобной золы ТЭС, битумоперлита и т.п., которые не замокают при длительном действии напора воды при условии, что тепловой поток направлен навстречу напору воды (рис. 4.4, а), так как в противном случае гидрофобный слой в летний период может замокнуть. Следует отметить, что гидрофобные засыпки дешевы.

При вероятности длительного воздействия напора грунтовых вод или наличии зон частичного оттаивания вечной мерзлоты подвалы защищают комплексной теплогидроизоляцией из асфальтокерамзитобетона, асфальтошлакобетона или пенопластов (рис. 4.4, б), или же теплоизоляцию усиливают гидроизоляционными прослойками, например, укладывая гидрофобную золу в полиэтиленовых мешках или защищая засыпку наружным гидроизоляционным покрытием (рис. 4.5).

При проектировании гидроизоляции фундаментов и подвалов зданий в районах вечной мерзлоты необходимо учитывать, что гидроизоляционные работы здесь будут вестись в неблагоприятных температурно-влажностных условиях. Только монтируемая, литая и засыпная гидроизоляция могут устраиваться практически при любой погоде, на любом морозе, а гидроизоляционные покрытия других типов приходится осуществлять в тепляках, обогреваемых горячим воздухом от калориферов. Высокая пожароопасность и вредность работ с летучими органическими растворителями исключают применение окрасочной гидроизоляции, но окраски из горячих полимербитумных сплавов БРМ и битэп возможны. Холодную асфальтовую гидроизоляцию при морозах до –15° С можно выполнять из мастики БНСХА, содержащей добавки антифриза, пластификатора и ускорителя стабилизации, без тепляков методом «термоса», закрывая сразу свеженанесенную влажную мастику цементной стяжкой из раствора с солевыми добавками и стабилизируя мастику путем прогрева бетона несущей конструкции в период его твердения [21, 56].

При ведении работ на вечномерзлых грунтах надо всемерно сокращать объем выемки под котлован здания, в связи с чем рекомендуется ограждать котлован деревянной шпунтовой стенкой и наносить на него гидроизоляционное покрытие, прижимая его бетоном основной конструкции фундамента, бетонируя его «враспор». В этом случае наиболее целесообразна оклеечная гидроизоляция из пластмассовых листов или полимербитумных рулонных материалов (армобитэпа либо эластобита).

В заключение отметим, что при больших масштабах гидроизоляционных работ в зимний период наиболее рациональна асфальтовая литая гидроизоляция, стоимость и трудоемкость которой такая же, как оклеечной гидроизоляции из четырех слоев стеклорубероида, что видно из сравнения данных табл. 2.2 и 4.1, а по надежности и возможности устройства в неблагоприятных условиях она значительно превосходит ее. В вечномерзлых грунтах на вертикальной поверхности ее надо выполнять из асфальтополимербетонных растворов для повышения трещиноустойчивости на морозе [65, 109].

Источник

ПРИМЕР РАСЧЕТА ГИДРОИЗОЛЯЦИИ

Отдельно стоящее убежище, возводимое в водонасыщенном грунте. Уровень грунтовых вод 2 м от поверхности земли.

Сооружение со стенами из бетонных блоков толщиной 0,6 м и перекрытием из сборных плит, свободно опертых на стены и замоноличенных слоем бетона, с засыпкой поверху слоем песчаного грунта толщиной 1 м.

Высота остова сооружения 4 м, расчетный пролет перекрытия L = 3 м. Расчетная динамическая нагрузка 0,2 МПа (2 кгс/см 2 ) при времени нарастания (t) менее 6 м.с.

Для гидроизоляционного покрытия используется листовой полиэтилен в один слой, приклеенный мастикой БКС. Толщина листа полиэтилена t = 0,15 см, расчетное сопротивление растяжению Rs = 15,5 МПа (155 кгс/см 2 ) (по табл. 8), модуль деформации Еm = 7,9 МПа (790 кгс/см 2 ), расчетное сопротивление мастики БКС сдвигу RG = 1,75 МПа (17,5 кгс/см 2 ) (по табл. 8), относительное удлинение εm = 0,2.

1. Определяем ширину возможной трещины, которая возникает в конструкции сооружения под воздействием нагрузки.

Одним из наиболее опасных мест, в которых возможны разрывы гидроизоляционного покрытия при образовании трещин в конструкции, является сопряжение перекрытия со стеной.

Согласно настоящих норм, расчет ведем с условием обеспечения полного прогиба перекрытия не более 1/200 (т.е. к = 1). Зная величину прогиба, размеры пролета и толщину стены, определяем путем графического построения, что ширина трещины будет 0,6 см.

Допустимая величина трещины по условию разрывы или вдавливания гидроизоляционного покрытия из листового полиэтилена равна 0,5 см. Для обеспечения сохранности гидроизоляции перекрытия в данном случае убежище необходимо запроектировать с прогибом не более 1/240L.

2. Определяем расчетную величину деформации, при которой гидроизоляционное покрытие будет деформироваться без разрыва:

кm — согласно табл. 7 равно 1;

Fа — с учетом нагрузки от грунта равно 0,218 МПа (2,18 кгс/см 2 );

μ — согласно табл. 9 равно 0,36

ат = 2´1´79´0,2 2 ´0,15/1,75 + 0,218´0,36 = 0,948/1,829 = 0,52 > 0,5 см.

Следовательно, при этой расчетной величине деформации ат = 0,52 см разрыва гидроизоляционного покрытия не произойдет.

3. Проверяем на отрыв гидроизоляции на вертикальных поверхностях при осадке сооружения под воздействием нагрузки.

По условиям работы гидроизоляции на эти воздействия наиболее опасным местом является сопряжение стены с фундаментом, т.е. на отметке 5 м от поверхности земли.

Нормальное давление со стороны грунта на гидроизоляционное покрытие Fа будет равно сумме динамической нагрузки, действующей на стену, давления грунта и гидростатического давления:

Fа = 0,2 + 0,023 + 0,03 = 0,253 МПа

Источник

Расчет расхода Гидроизоляции BERGAUF Hydrostop / БЕРГАУФ Гидростоп (20 кг)

Быстрая и недорогая доставка, а так же разгрузка и подъём в квартиру на любой этаж.

Экспертная консультация, помощь в подборе материала и расчёт требуемого количества.

Возврат в течении одного месяца или расширенный период возврата до конца ремонта * всего за 5% от стоимости материалов.

Все материалы хранятся на сухих складах, имеют сертификаты и паспорта качества.

Нажимая на кнопку «Отправить», вы соглашаетесь с Политикой конфиденциальности

Нажимая на кнопку «Отправить», вы соглашаетесь с Политикой конфиденциальности

Стоимость разгрузки и подъема

При наличии работающего грузового лифта стоимость разгрузки 1 тонны груза с учетом подъема в квартиру составляет 1 200 ? вне зависимости от этажа.

При отсутствии грузового лифта стоимость подъема 1 тонны груза на один этаж составляет 1 200 ?.

Стоимость простой разгрузки транспорта без подъема на этаж составляет 1 200 руб за тонну.

Минимальная стоимость выезда грузчика 300 руб.

© M-Delivery, 2021

ул. Мариупольская, д. 6,
офис 28. Москва, 109382

Мы принимаем:

Источник

Как правильно рассчитать расход обмазочной гидроизоляции

В процессе строительных и отделочных работ правильный учет расхода материалов крайне важен, включая расходы на гидроизоляцию. При проведении расчетов обязательно учитывается вид обмазочного материала, толщина слоя, влажность и температура.

Самым популярным, и, что немаловажно, достаточно эффективным и недорогим материалом для гидроизоляции является мастика на основе битума. Этот материал обладает массой достоинств:

  • Образует прочную водонепроницаемую пленку;
  • Закрывает все поры, а также незначительные повреждения — небольшие сколы и трещины;
  • Не допускает размножения микроорганизмов;
  • Хорошо клеится практически к любому строительному материалу;
  • Устойчива к низким температурам;
  • Застывшая мастика обладает хорошей эластичностью и не трескается.

Что касается расхода этого типа обмазочной гидроизоляции, то эта величина не постоянная, зависящая от состава материала и способа, которым он будет наноситься – холодным или горячим.

В зависимости от состава, различают такие виды обмазочной битумной гидроизоляции:

  • На основе минерального наполнителя;
  • Битумно-эмульсионные смеси;
  • Битумно-полимерные смеси.

Какое количество гидроизоляции нужно для создания качественного покрытия

Важным показателем любой обмазочной гидроизоляции является ее расход на 1м. Этот показатель производитель чаще всего указывает на поверхности тары. Если точный расход не указан, то, как правило, указывается расход для определенной толщины. Зная этот показатель, рассчитать фактический расход материала не составит никакого труда.

Например: для покрытия поверхности определенного типа слоем мастики толщиной в 2 мм нужно примерно 4 кг смеси в сухом остатке на 1 м. Сухой остаток – это мастика после того, как она полностью высохнет, рассчитывается в процентах от потраченной свежей смеси. Показатель сухого остатка всех битумных гидроизоляционных смесей составляет от 20 до70 %. Чем больше этот процент, тем меньше «усыхает» мастика, следовательно, тем выгодней работа в плане затрат материала и труда.

Зная расход для конкретной толщины слоя мастики, расход материала рассчитать очень легко. К примеру, требуется обработать площадь 7х5метров слоем мастики в 3 мм. Норма расхода материала, для толщины 1 в мм, указанная производителем равна 2 кг на 1 м. Для начала подсчитаем общую площадь поверхности, которую нужно обработать: 7х5=35м. Расход мастики на один слой: 35х2=70 кг. Умножаем на 3 слоя и получаем 70х3=210 кг материала.

Как видно, при наличии данных, указанных производителем, рассчитать расход обмазочной гидроизоляции нетрудно. Экономить на гидроизоляции нельзя, даже если ее расход кажется вам слишком большим.

Источник

Оцените статью
Строительство и ремонт